Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gia hân
Xem chi tiết
Trần Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 14:24

a: Xét tứ giác BMDN có 

DM//BN

DM=BN

Do đó: BMDN là hình bình hành

Quốc Lê Minh
Xem chi tiết
GV
4 tháng 1 2018 lúc 11:35

A B C D M N P 1 2 K H 2 H 1

a)  Ta có DM song song và bằng BN nên BMDN là hình bình hành (vì có 2 cạnh đối song song và bằng nhau)

b) Tam giác CDN bằng tam giác DAP (cạnh - góc - cạnh)

=> Góc D1 = góc A1

Ta lại có Góc D2 + Góc D1 = Góc D = 90 độ

=> Góc D2 + Góc A1 = 90 đo

Trong tam giác KAD có tổng 2 góc A và D bằng 90 độ nên góc K bằng 90 độ 

=> AP vuông góc với DN

c) Tương tự câu b ta có BM vuông góc với AP

=> BM // DN (vì cùng vuông góc vời AP)

=> BMKN là hình thang.

Theo câu b tam giác KAD vuông tại K có KM là trung tuyến ứng với cạnh huyền => KM = 1/2 AD

=> KM = BN

=> BMKN là hình thang cân

d) \(DP=\frac{1}{2}\sqrt{5},AP=\sqrt{5-\frac{1}{4}5}=\frac{\sqrt{15}}{2}\)

  \(DP^2=PK.PA\)

=> \(PK=\frac{DP^2}{PA}=\frac{\frac{5}{4}}{\frac{\sqrt{15}}{2}}=\frac{\sqrt{15}}{6}\)

=> \(\frac{PK}{PA}=\frac{\frac{\sqrt{15}}{6}}{\frac{\sqrt{15}}{2}}=\frac{1}{3}\)

=> Đường cao hạ từ K xuống DC bằng 1/3 đường cao hạ từ A xuống DC

=> Đường cao hạ từ K xuống DC = \(\frac{1}{3}\sqrt{5}\)

=> Đường cao hạ từ K xuống MN bằng \(\frac{1}{2}\sqrt{5}-\frac{1}{3}\sqrt{5}=\frac{\sqrt{5}}{6}\)

=> Diện tích KMN bằng \(\frac{1}{2}.MN.KH_2=\frac{1}{2}\sqrt{5}\frac{\sqrt{5}}{6}=\frac{5}{12}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 2 2018 lúc 17:41

a) Ta có AB // CD (gt)

Suy ra AM // CP    (1)

Lại có AM = AB/2; CP = CD/2    (2)

Từ (1) và (2) suy ra AMCP là hình bình hành

Suy ra AP // CM hay ES // FR.

Tương tự ta cũng chứng minh được tứ giác BQDN là hình bình hành nên BQ // DN. Suy ra EF // RS.

Vậy tứ giác EFRS là hình bình hành

b) Đặt PS = x. Suy ra CR = 2x (tính chất đường trung bình)

Từ đó suy ra RF = ES = AE = 2x

Suy ra: ES = 2AP/5 => SEFRS = 2SAMCP/5

Vì SAMCP = SABCD/2 nên SEFRS = SABCD/2

Hồ Nguyễn Ngọc Trang
Xem chi tiết

https://olm.vn/hoi-dap/detail/96788252350.html

Tham khảo ở link này (mình gửi cho)

Hoc tốt!!!!!!!!!!!!

Kitana
Xem chi tiết
Kamato Heiji
24 tháng 4 2021 lúc 9:10

Lời giải :

Để \(MPNQ\) là hình chữ nhật thì \(MN=PQ\)

Ta có : \(AM=\dfrac{1}{2}AD=\dfrac{1}{2}BC=BN\) , \(AM\) song song với BN \(\Rightarrow AMNB\) là hình bình hành \(\Rightarrow AB=MN\Rightarrow MN=CD\) 

Ta lại có : \(AP=PQ=QC\) ( cmt ) \(\Rightarrow PQ=\dfrac{1}{3}AC\)

\(\Rightarrow CD=MN=PQ=\dfrac{1}{3}AC\)

\(\dfrac{CA}{CD}=3\) thì MPNQ là hình chữ nhật

trịnh bình minh
25 tháng 12 2021 lúc 18:22

làm phần a hộ đko ạ

 

Đỗ Thị Trà My
Xem chi tiết
trường trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 11 2021 lúc 21:01

a: Xét tứ giác MBPA có 

N là trung điểm của MP

N là trung điểm của BA

Do đó: MBPA là hình bình hành

Totoro Totori
Xem chi tiết