Tìm số tự nhiên có 4 chữ số biết
\(\overline{abba}=\overline{ab}^2+\overline{ba}^2+a-b\)
Tìm các số tự nhiên có dạng \(\overline{abba}\)thỏa mãn điều kiện :
\(\overline{abba=}\overline{ab^2+}\overline{ba^2+a}-b\)
Tìm số tự nhiên có 4 chữ số dạng \(\overline{abba}\), thỏa mãn yêu cầu :
\(\overline{abba}\)\(=\)\(\overline{ab^2}\)\(+\overline{ba^2}\)\(+a-b\)
GIÚP MÌNH NHÉ, THS NHÌU ^.^
Tím số tự nhiên có bốn chữ số abba biết \(\overline{ab}^2-\overline{ba}^2\)là số chính phương, ab, ba là các số có hai chữ số khác nhau.
Tìm số tự nhiên có 4 chữ số \(\overline{abba}\) b iết \(\left(\overline{ab}\right)^2\)-\(\left(\overline{ba}\right)^2\)là số chính phương
Bài 1: Thay các chữ a, b, c, d bằng các số thích hợp:
\(\overline{ab}\times\overline{cd}=\overline{bbb}\)
Bài 2: Điền các chữ số vào dấu hỏi và vào các chữ sau:
a) \(\overline{abcd}\times\overline{dcba}=\overline{?????000}\)
b) \(????+????=?9997\)
Bài 3: Tìm số tự nhiên biết tổng của nó và các chữ số của nó bằng 1987.
Bài 4: Cho a là số có bốn chữ số, tổng các chữ số của a là b. Tổng các chữ số của b là c. Biết a + b + c = 1989. Tìm a.
Bài 5: Tìm số tự nhiên nhỏ nhất chia hết cho 1987 mà 5 chữ số đầu tiên bên trái của số tự nhiên đó đều là 1.
Bài 6: Tìm các chữ số a, b, c để: \(\overline{abbc}=\overline{ab}\overline{ }\times\overline{ac}\times7\)
Bài 5:
Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825
=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683
=> abc chia 1987 dư 304. Mà abc nhỏ nhất
=> abc = 304
Vậy số tự nhiên là 11111304
1/ Cho \(S=\overline{abc}+\overline{bca}+\overline{cab}\)
Chứng minh rằng: S không phải là số chính phương
2/ Tìm các số có ba chữ số sao cho hiệu của số ấy và số gồm 3 chữ số ấy viết theo thứ tự ngược lại là 1 số chính phương.
3/ Tìm 3 số tự nhiên a, b, c (a > b > c > 0), biết rằng: \(\overline{abc}+\overline{bca}+\overline{cab}=666\)
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)
Tìm các số tự nhiên có dạng \(\overline{abba}\)thỏa mãn :
\(\overline{abba}\) \(=\) \(\overline{ab^2}\) \(+\) \(\overline{ba^2}\) + \(a\) \(-b\)
Tìm số tự nhiên \(\overline{ab}\), biết: \(1+2+3+...+\overline{bc}=\overline{abc}\)
tìm các số tự nhiên có 2 chữ số \(\overline{ab}\)sao cho :
\(2\overline{ab}=a^2+b^2+36\)