Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lưu công khánh đăng
Xem chi tiết
phan thai tuan
15 tháng 4 2018 lúc 10:31

Đặt a=6m,b=6n. Vì (a,b)=6 => (m,n)=1

GT=>  m.n=6

=>m=1,n=6; m=2,n=3 và các hoán vị

=>a=6,b=36; a=12;b=18 và các hoán vị

Phan Tiến Nghĩa
7 tháng 4 2020 lúc 21:20

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

Khách vãng lai đã xóa
hatsunemiku
Xem chi tiết
Đặng Tiến Dũng
Xem chi tiết
Lê Chí Cường
14 tháng 8 2015 lúc 21:45

Xét a<b=>a+b<b+b=2b

Vì a>2=>ab>2b>a+b

=>a+b<ab

Xét b<a=>a+b<a+a=2a

Vì b>2=>ab>2a>a+b

=>a+b<ab

Vậy a+b<ab

Đặng Tiến Dũng
Xem chi tiết
Lê Chí Cường
14 tháng 8 2015 lúc 21:05

Giả sử a<b.

=>a+b<b+b=2b

Vì a>2=>ab>2b>a+b

=>a+b<ab

Giả sử b<a.

=>a+b<a+a=2a

Vì b>2=>ab>2a>a+b

=>a+b<ab

Vậy a+b<ab

cao thi khanh huyen
Xem chi tiết
THI MIEU NGUYEN
Xem chi tiết
Hồ Đức Việt
3 tháng 8 2021 lúc 7:52

Bạn tham khảo nha

Vì ƯCLN(a, b) = 16 ⇒ a và b là bội của 16, ta giả sử a = 16m; b = 16n với 

ƯCLN(m, n) = 1 và do các số tự nhiên khác 0 nên m,n ∈ N*

Ta có a + b = 96 nên 16. m + 16. n = 96

                                      16. (m + n) =96

                                               m + n = 96: 16

                                               m + n = 6

+) Với m = 1; n = 5 ta được a = 1. 16 = 16;  b = 5. 16 = 80

+) Với m = 5; n = 1, ta được a = 5. 16 = 80;  b = 1. 16 = 16

Vậy các cặp số (a; b) thỏa mãn là (16; 80); (80; 16)

Khách vãng lai đã xóa
Hoàng Yến
Xem chi tiết
Nguyễn Minh Ánh
19 tháng 12 2023 lúc 17:52

Do ƯCLN(a,b) = 12

=> a = 12 × a' b = 12 × b' (a'b')=1

Ta có:

a + b = 120

12 × a' + 12 × b' = 120

12 × (a' + b') = 120

a' + b' = 120 : 12

a' + b' = 10

Giả sử a > b => a' > b' mà (a'b')=1 => a' = 9; b' = 1 hoặc a' = 7; b' = 3

+ Với a' = 9; b' = 1 => a = 108; b = 12

+ Với a' = 7; b' = 3 => a = 84; b = 36

Vậy các cặp giá trị a,b thỏa mãn là: (108;12) ; (84;36) ; (36;84) ; (12;108)

ƯCLN(a,b)=34=>a chia hết cho 34;b chia hết cho 34

ta có a=m.34;b=n.34(m,n là số tư nhiên)

=>a.b=34.m.34.n=6936 

            m.n.1156 =6936

            m.n          =6936:1156

            m.n           =6=1.6=6.1=2.3=3.2

vậy:(m,n):(1;6),(6;1),(2;3),(3;2)

do 72= 32.23

nếu ít nhất trong 2 số a , b có 1 số chia hết cho 2 

giả sử a chia hết cho 2 =>b=42-a cũng chia hết cho 2

=> cả a và b đều chia hết cho 2

vì vậy tương tự ta cũng có a,b chi hết cho 3

=>a và b chia hết cho 6

ta thấy 42=36+6=30+12=18+24(là tổng 2 số chia hết cho 6)

trong các số trên chỉ có số 18 và 24 thỏa mãn

=>a=18;b=24

THI MIEU NGUYEN
Xem chi tiết

    Đây là toán nâng cao chuyên đề ước chung và bội chung, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:

                        Giải:

Vì ƯCLN(a; b) 16 nên  \(\left\{{}\begin{matrix}a=16k\\b=16d\end{matrix}\right.\)(k;d) =1; k;d \(\in\) N*

Theo bài ra ta có: 16k + 16d = 96

                              16.(k + d) = 96

                                    k + d =  96 : 16

                                    k + d  = 6

Lập bảng ta có:

k 1 2 3 4 5
a = 16k 16       80
d 5 4 3 2 1
b = 16d 80       16
(k; d) = 1 TM loại loại loại TM

Theo bảng trên ta có: (a; b) = (16; 80); (80; 16)

Kết luận vậy các cặp số a; b thỏa mãn đề bài là:

(a;b) = (16; 80); (80; 16) 

 

      

 

 

    

    Đây là toán nâng cao chuyên đề ước chung và bội chung, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:

                        Giải:

Vì ƯCLN(a; b) 16 nên  \(\left\{{}\begin{matrix}a=16k\\b=16d\end{matrix}\right.\)(k;d) =1; k;d \(\in\) N*

Theo bài ra ta có: 16k + 16d = 96

                              16.(k + d) = 96

                                    k + d =  96 : 16

                                    k + d  = 6

Lập bảng ta có:

k 1 2 3 4 5
a = 16k 16       80
d 5 4 3 2 1
b = 16d 80       16
(k; d) = 1 TM loại loại loại TM

Theo bảng trên ta có: (a; b) = (16; 80); (80; 16)

Kết luận vậy các cặp số a; b thỏa mãn đề bài là:

(a;b) = (16; 80); (80; 16) 

 

      

 

 

Nguyễn Viết Tùng
Xem chi tiết
Trần Đình Thiên
3 tháng 8 2023 lúc 21:18

Vì a, b, c, d là các số tự nhiên khác 0, nên a, b, c, d đều lớn hơn hoặc bằng 2.

Giả sử a^nb^nc^nd^n là số nguyên tố, tức là không thể phân tích thành tích của các số tự nhiên khác 1.

Ta có:
a^nb^nc^nd^n = (a^n)(b^n)(c^n)(d^n)

Vì a, b, c, d đều lớn hơn hoặc bằng 2, nên a^n, b^n, c^n, d^n đều lớn hơn hoặc bằng 2.

Vậy, (a^n)(b^n)(c^n)(d^n) là tích của ít nhất 4 số tự nhiên lớn hơn hoặc bằng 2.

Do đó, a^nb^nc^nd^n không thể là số nguyên tố.

Vậy, a^nb^nc^nd^n là hợp số.