Cho: a^3 + 3a^2b = 5
b^3 + 3ab^2= 10
Tìm A biết A= 2017a + 2017b
Cho a^3 - 3ab^2 = 5 và b^3 - 3a^2b =10 . TÍnh S=a^2 +b^2
Ta có: (a3 - 3ab2) 2 = a6 - 6a4b2 + 9a2b4 = 25
(b3 - 3a2b)2 = b6 - 6a4b2 + 9a4b2 = 100
⇒ (a3 - 3a2b)2 - (b3 - 3a2b)2 = a6 - 6a4b2 + 9a2b4 + b6 - 6a2b4 + 9a4b2 = 125
⇔ a6 + 3a4b2 = 3a2b4 + b6 = 125
⇔ (a2 + b2)3 = 125
⇒ a2 + b2 = 5
Ta có: (a3 - 3ab2) 2 = a6 - 6a4b2 + 9a2b4 = 25
(b3 - 3a2b)2 = b6 - 6a4b2 + 9a4b2 = 100
⇒ (a3 - 3a2b)2 - (b3 - 3a2b)2 = a6 - 6a4b2 + 9a2b4 + b6 - 6a2b4 + 9a4b2 = 125
⇔ a6 + 3a4b2 + 3a2b4 + b6 = 125
⇔ (a2 + b2)3 = 125
⇒ a2 + b2 = 5
Cho a^3 -3ab^2 = 10 và b^3 - 3a^2b = 5. Tính: a^2 + b^2
cho a^3-3ab^2=5 và b^3-3a^2b=10
Tính S=a^2+b^2
Ta có:\(a^3-3ab^2+b^3-3a^2b=15\)
\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-3ab\left(a+b\right)=15\)
\(\Rightarrow\left(a+b\right)\left(a^2-4ab+b^2\right)=15\)
Đến đây thì đơn giản rồi,bạn lập bảng xét ước nữa là xong
@Khong Biet trả lời sai rồi. đây có phải bài nghiệm nguyên đâu mà lập bảng xét dấu
co a^3 -3ab^2=5 va b^3-3a^2b=10
Tinh S=a^2 +b^2
1/ Cho tam giác ABC vuông tại A, AM là trung tuyến ứng với cạnh BC. Biết AB = 5cm, AC = 12cm.
a) Tính BC, AM.
b) Từ M, kẻ MD⊥AB, ME⊥AC. Tứ giác ADME là hình gì? Vì sao?
c)Điểm M nằm ở vị trí nào trên cạnh BC để tứ giác ADME là hình vuông?( giải giúp mình câu c thôi nhé)
2/ Cho a\(^3\)- 3ab\(^2\)= 5 và b\(^3\)- 3a\(^2\)b=10. Tính S= 2017a\(^2\) + 2017b\(^2\)
1/ a/ BC = \(\sqrt{5^2+12^2}\)= 13 (cm) (định lí Pytago)
Vì AM là đường trung tuyến ứng với cạnh BC nên AM = 1/2 BC = 1/2 x 13 = 6,5 (cm)
b/ Ta có: \(\widehat{DAE}=\widehat{MDA}=\widehat{MEA}=\)90 độ
=> Tứ giác ADME là hình chữ nhật
c/ AM là phân giác của \(\widehat{BAC}\)
[ học toán ngu nhất là cm câu c :"< mấy câu giống vậy anh bỏ hết ]
Giúp tôi nhé
Cho a^3 - 3ab^2 = 5 và b^3 - 3a^2b = 10
Tính S = 2016a^2 + 2016b^2
dễ thôi . bạn bình phương 2 cái họ cho đó sau đó cộng lại. tìm đc a^2 + b^2 bằng 5 thì phải ( mk nhẩm thế ) sao đó tính là xong
CHo a,b,c>0 ,a+b+c=3. Tìm GTNN:
\(P=\frac{2017a^3}{1+b^2}+\frac{2017b^3}{1+c^2}+\frac{2017c^3}{1+a^2}\)
Ta có bđt \(ab^2+bc^2+ca^2\le\frac{1}{3}\left(a+b+c\right)\left(a^2+b^2+c^2\right)=a^2+b^2+c^2\)
\(P=2017\left(\frac{a^3}{1+b^2}+\frac{b^3}{1+c^2}+\frac{c^3}{1+a^2}\right)\)
Ta có: \(\frac{a^3}{1+b^2}+\frac{a\left(1+b^2\right)}{4}\ge2\sqrt{\frac{a^3}{1+b^2}.\frac{a\left(1+b^2\right)}{4}}=a^2\)
Tương tự suy ra \(\frac{a^3}{1+b^2}+\frac{b^3}{1+c^2}+\frac{c^3}{1+a^2}\ge\left(a^2+b^2+c^2\right)-\frac{1}{4}\left(a+b+c\right)-\frac{1}{4}\left(ab^2+bc^2+ca^2\right)\)
\(\ge\left(a^2+b^2+c^2\right)-\frac{3}{4}-\frac{1}{4}\left(a^2+b^2+c^2\right)=\frac{3}{4}\left(a^2+b^2+c^2\right)-\frac{3}{4}\ge\frac{3}{4}.3-\frac{3}{4}=\frac{3}{2}\)
cmr (a+b)^3=a^3-a^2b+3ab^2-b^3 ; (a-b)^3= a^ - 3a^2b+3ab^2-b^3 ;
Cho \(a^3-3ab^2=5\) và \(b^3-3a^2b=10\). Tính \(M=a^2+b^2\)
Ta có \(\left(a^3-3ab^2\right)^2\) =\(a^6-6a^4b^2+9a^2b^4=25\)
\(\left(b^3-3a^2b\right)^2=b^6-6a^2b^4+9a^4b^2=100\)
\(=>\left(a^3-3a^2b\right)^2-\left(b^3-3a^2b\right)^2=a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=125\)
\(< =>a^6+3a^4b^2=3a^2b^4+b^6=125\)
\(< =>\left(a^2+b^2\right)^3=125\)
\(=>a^2+b^2=5\)