Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
titanic
Xem chi tiết
Doann Nguyen
26 tháng 12 2017 lúc 6:56

Với a,b,c>0 .

áp dụng bđt cosi,ta có:

b.c/a+c.a/b>_2c (1)

c.a/b+a.b/c>_2a (2)

a.b/c+b.c/a>_2b ((3)

Cộng (1),,(2),,(3) vế theo vế ,ta được:

2.(b.c/a+c.a/b+a.b/c)>_ 2.(a+b+c)

=>b.c/a+c.a/b+a.b/c>_ a+b+c (đpcm)

Vô danh đây vip
Xem chi tiết
Ngu Ngu Ngu
6 tháng 4 2017 lúc 21:49

Giải:

Từ giả thiết ta có:

\(\left(1-b\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow1-\left(b+c\right)+bc\ge0\)

\(\Leftrightarrow bc+1\ge b+c\)

\(\Rightarrow\frac{a}{bc+1}\le\frac{a}{b+c}\le\frac{a}{a+b}\left(1\right)\)

Tương tự ta có:

\(\frac{b}{ac+1}\le\frac{b}{a+c}\le\frac{b}{a+b}\left(2\right)\)

\(\frac{c}{ab+1}\le c\le1\left(3\right)\)

Cộng theo vế \(\left(1\right);\left(2\right);\left(3\right)\) ta được:

\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a+b}{a+b}+1=2\)

Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\) (Đpcm)

Phúc Vũ
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
1 tháng 6 2018 lúc 20:31

Câu hỏi của Called love - Toán lớp 8 - Học toán với OnlineMath

Ban jtrar My làm òi nhé !

Arima Kousei
1 tháng 6 2018 lúc 20:57

Bạn tham khảo tại đây : 

Câu hỏi của Nguyễn Anh Quân - Toán lớp 8 - Học toán với OnlineMath

~ Ủng hộ nhé 

๖Fly༉Donutღღ
1 tháng 6 2018 lúc 21:10

P/s nhớ là đã làm 1 lần rùi :)

\(a+b+c\ge3\sqrt[3]{3}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3^3\sqrt{\frac{1}{abc}}\)

Nhân 2 vế lại với nhau ta được: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

Vậy \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(đpcm\right)\)

tth_new
Xem chi tiết
Trần Phúc Khang
30 tháng 5 2019 lúc 13:45

Ta có 

\(\frac{a^2}{a+b^2}=\frac{a^2+ab^2-ab^2}{a+b^2}=a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\ge a-\frac{1}{4}b\left(a+1\right)\)

Khi đó 

\(A\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(ab+bc+ac\right)\)

Mà \(ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=3\)

=> \(A\ge\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)( ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

Trần Phúc Khang
30 tháng 5 2019 lúc 14:28

\(a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\)

Do \(a+b^2\ge2b\sqrt{a}\)

\(a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\ge a-\frac{1}{4}b\left(a+1\right)\)

Do \(\sqrt{a}\le\frac{a+1}{2}\)

Nguyễn Thị Mát
Xem chi tiết
Nguyễn Thị Mát
29 tháng 11 2019 lúc 18:39

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\\\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{c}\\\frac{1}{b}=\frac{1}{a}\end{cases}}\)

\(\Leftrightarrow a=b=c\)

Vậy P =1

Khách vãng lai đã xóa
Hồ Quốc Khánh
Xem chi tiết
I like math
Xem chi tiết
Hằng Trương thị thu
Xem chi tiết
Phương Trâm
13 tháng 1 2017 lúc 9:02

Ta có:

\(\frac{1}{1+a+a.b}+\frac{1}{1+b+b.c}+\frac{1}{1+c+a.c}\)

\(=\frac{1}{1+a+a.b}+\frac{a}{a+a.b+a.b.c}+\frac{a.b}{a.b+a.b.c+a.c.a.b}\)

\(=\frac{1}{1+a+a.b}+\frac{a}{a+a.b+a}+\frac{a.b}{a.b+1+a}\)

\(=\frac{1+a+a.b}{1+a+a.b}=1\)

Vũ Thu Mai
Xem chi tiết
trần thành đạt
2 tháng 1 2018 lúc 16:59

bài 1 a, hình như có thêm đk là a+b+c=3

trần thành đạt
2 tháng 1 2018 lúc 17:14

Bài 4 nha

Áp dụng BĐT cô si ta có

\(\frac{1}{x^2}+x+x\ge3\sqrt[3]{\frac{1}{x^2}.x.x}=3.\)

Tương tự với y . \(A\ge6\)dấu = xảy ra khi x=y=1

trần thành đạt
2 tháng 1 2018 lúc 20:11

câu 1 mk bị lộn nhưng đáng ra  ca^2 thành c^2a  mới đúng