Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Quyên
Xem chi tiết
Nguyễn Lê Ngọc Thanh
Xem chi tiết
Mt sunnny
Xem chi tiết
Hoàng Giang Phạm
Xem chi tiết
Bùi Hải Ngọc
Xem chi tiết
Tuấn
22 tháng 7 2016 lúc 0:42

a Tách \(M=2+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\le2+1=3\)
Dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2
b,:\(N\ge\frac{\left(1+\frac{2015}{x}+1+\frac{2015}{y}\right)^2}{2}=\frac{\left(2+2015\left(\frac{1}{x}+\frac{1}{y}\right)\right)^2}{2}\)
áp dunngj svac =>\(N\ge\frac{\left(2+2015\left(\frac{\left(1+1\right)^2}{x+y}\right)\right)^2}{2}=\frac{\left(2+\frac{2015.4}{2015}\right)^2}{2}=18\)
dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2

Bùi Hải Ngọc
22 tháng 7 2016 lúc 23:32

Cảm ơn bn nha :))

Tuấn
25 tháng 7 2016 lúc 23:14

@ mình rep lúc 12h mà trả lời lúc 11h :))

Vũ Linh Ta
Xem chi tiết
Phùng Khánh Linh
16 tháng 5 2018 lúc 13:05

Bạn ơi , có sai đề ko z ?

Dương Thị Hồng Nhung
24 tháng 7 2018 lúc 22:17

Ta co :

\(B=y^2-2y\left(1-y\right)+1-2y+y^2+y^2-8y+16+x^2+2x+1+2002\)

B=\(\left(y-1+y\right)^2+\left(y-4\right)^2+(x+1)^2+2002\)

Vi \(\left(2y-1\right)^2;\left(y-4\right)^2;\left(x+1\right)^2\) luon lon hon hoac bang 0 nen

ta co : minB=2002

Huy Hoàng Phạm (Ken)
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2023 lúc 0:59

b: 5x^2+5y^2+8xy-2x+2y+2=0

=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0

=>(x-1)^2+(y+1)^2+(2x+2y)^2=0

=>x=1 và y=-1

M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1

BGGaming
Xem chi tiết
Đinh Thùy Linh
27 tháng 6 2016 lúc 9:54

\(VT=x^2+y^2+1+2xy+2x+2y+x^2=\left(x+y+1\right)^2+x^2\ge0\forall x;y\)

Đẳng thức xảy ra khi: \(\hept{\begin{cases}x=0\\x+y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)

Phạm Thị Thu Trang
Xem chi tiết
JOKER_Võ Văn Quốc
22 tháng 8 2016 lúc 14:42

Ta có\(x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{xy+yz+zx+x^2}}\)

\(=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)

Tương tự:\(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=yx+yz\)

               \(z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}=zx+zy\)

Ta có :\(P=xy+xz+yx+yz+zx+zy=2\left(xy+yz+zx\right)=4030\)

=>P không phải là số chính phương