Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thuy duong
Xem chi tiết
Vo Hai Duong
Xem chi tiết
Hồ Thu Giang
3 tháng 9 2016 lúc 19:12

\(a^2-\frac{3}{5^2}=\frac{1}{1.2}+\frac{1}{2.7}+\frac{1}{7.5}+\frac{1}{5.13}+\frac{1}{13.8}+\frac{1}{8.19}+\frac{1}{19.11}+\frac{1}{11.25}\)

\(a^2-\frac{3}{5^2}=2.\left(\frac{1}{2.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}+\frac{1}{16.19}+\frac{1}{19.22}+\frac{1}{22.25}\right)\)

\(a^2-\frac{3}{5^2}=2.\frac{1}{3}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{22}-\frac{1}{25}\right)\)

\(a^2-\frac{3}{5^2}=\frac{2}{3}\left(\frac{1}{2}-\frac{1}{25}\right)\)

=> \(a^2-\frac{3}{25}=\frac{2}{3}.\frac{23}{50}=\frac{23}{75}\)

=> \(a^2=\frac{23}{75}+\frac{3}{25}=\frac{32}{75}\)

=> \(a=\sqrt{\frac{32}{75}}\)(Nếu thế thì đây phải là đề của lớp 7 chứ nhỉ)

Trang
Xem chi tiết
Nguyễn Thị Thủy
Xem chi tiết
Nguyễn Hoài Anh
Xem chi tiết
Đức Anh Noo Nguyen
Xem chi tiết
Nguyễn Mai Phương
Xem chi tiết
Phan Tuấn Đức
Xem chi tiết
Trần Thuỳ Trang
Xem chi tiết
Trần Thuỳ Trang
6 tháng 5 2019 lúc 18:20

Chỗ 4 mũ 2/3.5 x ... x 59 mũ 2/58.60 nha

Nguyễn Phạm Hồng Anh
6 tháng 5 2019 lúc 18:22

a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)

                                                                                   \(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)

=> đpcm

Study well ! >_<