Cho \(A=\frac{3-x}{x-1}\)
Tìm các giá trị nguyên của X để A có giá trị nhỏ nhất.
Cho biểu thức:\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
1. Với giá trị nào của x thì biểu thức A xác định?
2.Tìm giá trị của x để A đạt giá trị nhỏ nhất.
3.Tìm các giá trị nguyên của x để A có giá trị nguyên.
Cho biểu thức E = \(\frac{3-x}{x-1}\). Tìm các giá trị nguyên của x để :
a) E có giá trị nguyên
b) E có giá trị nhỏ nhất
Xét biểu thức A = \(\frac{1}{15}\cdot\frac{225}{x+2}+\frac{3}{14}\cdot\frac{196}{3\cdot x+6}\)
a) Rút gọn biểu thức A.
b) Tìm các giá trị của x để A có giá trị là số nguyên.
c) Trong các giá trị của A. Tìm giá trị lớn nhất và giá trị nhỏ nhất.
Làm khâu rút gọn thôi
\(=\frac{15}{x+2}+\frac{42}{3x+6}\)
\(=\frac{15}{x+2}+\frac{42}{3\left(x+2\right)}\)
\(=\frac{3.15+42}{3\left(x+2\right)}\)
\(=\frac{87}{3\left(x+2\right)}\)
\(=\frac{29}{x+2}\)
Câu b có phải để tử chia hết cho mẫu không nhỉ? Không chắc thôi để ngkh làm
a, A=15/x+2 +42/3x+6
=45/3x+6 + 42/3x+6
=87/3x+6 = 29x+2
b,để A có giá trị là số nguyên thì 29 phải chia hết cho x+2 hay x+2 thuộc tập hợp ước của 29 mà Ư(29)={29;-29;1;-1} .
Xét từng trường hợp .C, lấy trường hợp lớn nhất và bé nhất
1,cho biểu thức C=\(\left(\frac{x}{x+2}+\frac{5x-12}{5x^2-12x}-\frac{8}{5x^2+10x}\right):\frac{x^2-2x+2}{x^2-x-6}\)
a,tìm điều kiện để giá trị của C được xác định
b,rút gọn biểu thức
c,tìm giá trị của x để giá trị của C nhỏ nhất.Xác định giá trị nhỏ nhất đó
d,tìm các giá trị nguyên của x để C có giá trị nguyên
\(M=\frac{x+3}{x-2}\)
Tìm các giá trị nguyên của x để
a, M có giá trị nguyên
b, M có giá trị nhỏ nhất
a. Ta có:
\(M=\frac{x+3}{x-2}=\frac{x-2+2+3}{x-2}=\frac{x-2}{x-2}+\frac{2+3}{x-2}=1+\frac{5}{x-2}\)
- Để M nguyên thì 5 phải chia hết x - 2
\(\Rightarrow\)x - 2 \(\in\)Ư(5) = {-5;-1;1;5}
\(\Rightarrow\)x \(\in\){-3;1;3;7}
Vậy:...
a, \(\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
\(\Rightarrow x-2\in\text{Ư}\left(5\right)=\left(+-1;+-5\right)\)
Lập bảng (tự tính nhé)
b, Vì tử thức =5 >0 (dương không đổi )
\(\Rightarrow x-2\)đạt GTLN
Suy ra \(x-2=-1\)
\(\Rightarrow x=1\)
Vậy MinM=-4 \(\Leftrightarrow x=1\)
Hok tốt
Cho biểu thức A=3/x-1
a. Tìm số nguyên x để A đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất.
b. Tìm số nguyên x để A đạt giá trị lớn nhất. Tìm giá trị lớn nhất.
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
cho biểu thức sau :
a) Rút gọn A
b) Tìm các giá trị nguyên của x để A có giá trị là số nguyên lớn nhất và số nguyên nhỏ nhất
A= \(\frac{1}{3}.\left(\frac{-65}{x-7}+\frac{26}{x-7}\right)\)
1. Tìm các giá trị nguyên của x để các biểu thức sau có giá trị lớn nhất
a. A=1/7-x b.B=27-2x/12-X
2.Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nhỏ nhất
a. A=1/x-3 b. B= 7-x/x-5 c. C= 5x-19/x-4
3.Tìm giá trị nhỏ nhất của các biếu thức sau
a. A=x^4+3x^2 +2 b. B=(x^4+5)^2 c. C=(x-1)^2+(y+2)^2
4.Tìm giá trị lớn nhất của các biểu thức sau
a. A=5-3(2x-1)^2 b.B=1/2(x-1)^2+3 c. C=x^2+8/x^2+2
Cho Biểu Thức \(E=\frac{3-x}{x-1}\) Tìm Giá Trị Nguyên Của x Để:
a) E có Giá Trị Nguyên
b)E có Giá Trị Nhỏ Nhất
a) Ta có : \(x\ne1\)
Vì \(x\inℤ\Rightarrow\frac{3-x}{x-1}\inℤ\Leftrightarrow\hept{\begin{cases}3-x\inℤ\\x-1\inℤ\end{cases}}\)
Mà \(\frac{3-x}{x-1}=\frac{-x+3}{x-1}=\frac{-x+1+2}{x-1}=\frac{-\left(x-1\right)+2}{x-1}=-1+\frac{2}{x-1}\)
Lại có : \(-1\inℤ\Rightarrow E\inℤ\Leftrightarrow\frac{2}{x-1}\inℤ\Leftrightarrow2⋮x-1\)
\(\Rightarrow x-1\inƯ\left(2\right)\)
\(\Rightarrow x-1\in\left\{\pm1;\pm2\right\}\)
Lập bảng xét 2 trường hợp ta có :
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) |
Vậy \(x\in\left\{2;0;3;-1\right\}\)