Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Diệu Linh Trần Thị
Xem chi tiết
Lê Thành Vinh
5 tháng 4 2017 lúc 21:51

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

__Anh
Xem chi tiết
Quỳnh Hoa Lenka
Xem chi tiết
soyeon_Tiểubàng giải
22 tháng 11 2016 lúc 13:14

a) Có: \(2^3=8\equiv1\left(mod7\right)\Rightarrow2^{51}\equiv1\left(mod7\right)\)

\(\Rightarrow2^{51}-1⋮7\left(đpcm\right)\)

b) 270 + 370 = (22)35 + (32)35 = 435 + 935

\(=\left(4+9\right).\left(4^{34}-4^{33}.9+....-4.9^{33}+9^{34}\right)\)

\(=13.\left(4^{34}-4^{33}.9+...-4.9^{33}+9^{34}\right)⋮13\left(đpcm\right)\)

 

Lê Xuân Phú
Xem chi tiết

phần a sai đề nha bạn 

b,Ta có

      \(2\equiv2\left(mod13\right)\)

\(\Rightarrow2^{12}\equiv1\left(mod13\right)\)

\(\Rightarrow2^{12.5}.2^{10}\equiv1.2^{10}\left(mod13\right)\)

\(\Rightarrow2^{60}.2^{10}\equiv1024\left(mod13\right)\)

\(\Rightarrow2^{70}\equiv10\left(mod13\right)\)\(\left(1\right)\)

Lại có:

\(3\equiv3\left(mod13\right)\)

\(\Rightarrow3^6\equiv1\left(mod13\right)\)

\(\Rightarrow3^{6.11}.3^4\equiv1.3^4\left(mod13\right)\)

\(\Rightarrow3^{66}.3^4\equiv81\left(mod13\right)\)

\(\Rightarrow3^{70}\equiv3\left(mod13\right)\)\(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow2^{70}+3^{70}\equiv13\equiv0\left(mod13\right)\)

Khách vãng lai đã xóa

c, Ta có

\(17\equiv-1\left(mod18\right)\)

\(\Rightarrow17^{19}\equiv-1\left(mod18\right)\)\(\left(1\right)\)

Lại có

\(19\equiv1\left(mod18\right)\)

\(\Rightarrow19^{17}\equiv1\left(mod18\right)\)\(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow17^{19}+19^{17}\equiv0\left(mod18\right)\)

\(\Rightarrow17^{19}+19^{17}⋮18\)

Khách vãng lai đã xóa

d,Ta có

\(36\equiv1\left(mod7\right)\)

\(\Rightarrow36^{63}\equiv1\left(mod7\right)\)

\(\Rightarrow36^{63}-1\equiv0\left(mod7\right)\)

\(\Rightarrow36^{63}-1⋮7\)

Khách vãng lai đã xóa
Kỳ Kỳ
Xem chi tiết
Sherlockichi Kudoyle
15 tháng 7 2016 lúc 10:46

1) \(10^{19}+10^{18}+10^{17}=10^{16}.10^3+10^{16}.10^2+10^{16}.10=10^{16}.\left(1000+100+10\right)=10^{16}.1110\)

vì 1110 : 555 bằng 2 

=> ................... chia hết cho 555

Hồ Ngọc Minh Châu Võ
15 tháng 7 2016 lúc 10:49

1) ( 1019+ 1018+1017) chia hết cho 555

= 1017.102+1018.10+1017

1017.(102+10+1)

= 1017.111

= 1016.10.111

= 1016.1110 = 1016.555.2

=> ( 1019+ 1018+1017) chia hết cho 555

Kỳ Tỉ
Xem chi tiết
qwertyuiop
Xem chi tiết
Nguyễn Vũ Dũng
24 tháng 11 2015 lúc 21:33

8a+1 chc 17

17 chc 17

=>8a+1+17 chc17 =>8a+18 chc 17 (đpcm)

tick nha

Ngô Linh
Xem chi tiết
Linh Ngô
Xem chi tiết