Cho x=3a+1 với a=0;1;2;3;4.Bằng cách liệt kê các phần tử hãy viết tập hợp G gồm các phần tử của tập hợp đó
Cho mình xin cả lời giải nha!
Câu 1: a)Biết rằng a,b,c thuộc Z. Hỏi số 3a^2.b.c^3; -2a^3b^5c; -3a^5b^2c^2 có thể cung âm không?
Cho hai tích -2a^5b^2 và 3a^2b^6 cùng dấu. Tìm dấu của a?
Cho a và b trái dấu, 3a^2b^1980 và -19a^5b^1890 cùng dấu. Xác định dấu của a và b?
b)Cho x thuộc Z và E=(1-x)^4.(-x). Với điều kiện nào của x thì E =0;E>0;E<0.
câu 1
xét tích 3 số
=(3a^2.b.c^3).(-2a^3b^5c).(-3a^5.b^2.c^2)
=[3.(-2).(-3)].(a^2.a^3.a^5).(b.b^5.b^2).(c.c^3.c^2)
=18.a^10.b^8.c^5 bé hơn hoặc bằng 0
=>tích 3 số đó không thể cùng âm=>3 số đó ko cùng âm dc
bây giờ mk đi học rùi tí về mk làm típ nhá
Cho phương trình
\(\dfrac{x-a}{x+a}-\dfrac{x+a}{x-a}+\dfrac{3a^2+a}{3a^2-a^2}=0\)
a, Giải phương trình với a=3
b, Giải PT với a=1
c, Xác định a để PT có nghiệm x=0,5
a) Khi $a=3$, ta có phương trình:
$$x-3x+3-x+3x-3+3^2+3^3-3^2=0$$
$$\Leftrightarrow 6x=51 \Leftrightarrow x=\frac{17}{2}$$
Vậy nghiệm của phương trình là $x=\frac{17}{2}$.
b) Khi $a=1$, ta có phương trình:
$$x-x+1-x+1x-1+3+1-1=0$$
$$\Leftrightarrow x=0$$
Vậy nghiệm của phương trình là $x=0$.
c) Để phương trình có nghiệm $x=0,5$, ta cần giải phương trình:
$$0,5-a(0,5)+a-0,5+a(0,5)-a+3a^2+a^3-a^2=0$$
$$\Leftrightarrow a^3+3a^2-2a=0$$
$$\Leftrightarrow a(a-1)(a+2)=0$$
Vậy các giá trị của $a$ để phương trình có nghiệm $x=0,5$ là $a=0,1$ hoặc $a=-2$.
Cho đồ thị của hai hàm số \(y = {\log _a}x\left( {a > 0,a \ne 1} \right)\) và \(y = b\) như Hình 3a (với \(a > 1\)) hay Hình 3b (với \(0 < a < 1\)). Từ đây hãy nhận xét về số nghiệm và công thức nghiệm của phương trình \({\log _a}x = b\).
tham khảo.
Đồ thị của hai hàm số \(y=\log_ax\) và \(y=b\) luôn cắt nhau tại một điểm duy nhất. Khi đó phương trình \(\log_ax=b\) có nghiệm duy nhất \(x=a^b\).
1.Cho phương trình ẩn x:
x-a/x+a - x+a/x-a + 3a^2+a/x^2-a^2 = 0
a)Giải phương trình với a = -3
b)Giải phương trình với a = 1
c)Xác định a để phương trình có nghiệm x = 0.5
2.Với giá trị nào của a để các biểu thức sau có giá trị bằng 2?
a)2a-9/2a-5 + 3a/3a-2
b)3a+2/3a+4 + a-2/a+4
(mong mn giúp mk, mk đang thật sự gấp lắm. Cảm ơn mn nhiều <3)
https://hoc24.vn/hoi-dap/question/177629.html (câu 2)
https://hoc24.vn/hoi-dap/question/940816.html?pos=2486212 (câu 1)
\(giải phương trình 2(x^2 +1/x^2) -7(x-1/2)+2=0 tính giá trị biểu thức A=2a^3-3a^2-3a+1 với a=1/ \sqrt{3}-1 \)
\(Sửa đề a=1/(căn 3 của 3) -1 \)
Bài 1: Cho xyz=2 và x+y+z=0. Tính giá trị của biểu thức: N=(x+y)(y+z)(x+z)
Bài 2: Tính giá trị biểu thức: 3a-2b / a-3b với a/b= 10/3
Bài 5: Tính giá trị của biểu thức: a-8 / b-5 - 4a-b / 3a+3 với a-b=3
Bài 1 :
\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)
hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)
mà \(xyz=2\Rightarrow-xyz=-2\)
hay N nhận giá trị -2
Bài 2 :
\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)
hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)
hay biểu thức trên nhận giá trị là 24
c, Ta có : \(a-b=3\Rightarrow a=3+b\)
hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)
\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi
1.Ta có:\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)
2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)
Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)
Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)
Vậy....
Bài 1: Cho xyz=2 và x+y+z=0. Tính giá trị của biểu thức: N=(x+y)(y+z)(x+z)
Bài 2: Tính giá trị biểu thức: 3a-2b / a-3b với a/b= 10/3
Bài 5: Tính giá trị của biểu thức: a-8 / b-5 - 4a-b / 3a+3 với a-b=3
Cho phương trình (ẩn x):x+a/a-x - x-a/a+x=a(3a+1)/a^2-x^2
Giải phương trình với a=-3Giải phương trình với a=1Giải phương trình với a=0Tìm các giá trị của a sao cho phương trình nhận x=1/2 làm nghiệm
1. a = 3 thì phương trình trở thành:
\(\frac{x+3}{3-x}-\frac{x-3}{3+x}=\frac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2}-x^2\)
\(\Leftrightarrow\frac{\left(x+3\right)^2+\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}=\frac{-3\left[-9+1\right]}{9}-x^2\)
\(\Leftrightarrow\frac{x^2+6x+9+x^2-6x+9}{\left(3-x\right)\left(3+x\right)}=\frac{-3.\left(-8\right)}{9}-x^2\)
\(\Leftrightarrow\frac{2x^2+18}{9-x^2}=\frac{24}{9}-x^2\)
\(\Leftrightarrow\frac{2x^2+18}{9-x^2}+x^2=\frac{24}{9}\)
\(\Leftrightarrow\frac{2x^2+18+9x^2-x^4}{9-x^2}=\frac{24}{9}\)
\(\Leftrightarrow\frac{11x^2+18-x^4}{9-x^2}=\frac{24}{9}\)
\(\Leftrightarrow99x^2+18-9x^4=216-24x^2\)
\(\Leftrightarrow9x^4-123x^2+198=0\)
Đặt \(x^2=t\left(t\ge0\right)\)
Phương trình trở thành \(9t^2-123t+198=0\)
Ta có \(\Delta=123^2-4.9.198=8001,\sqrt{\Delta}=3\sqrt{889}\)
\(\Rightarrow\orbr{\begin{cases}t=\frac{123+3\sqrt{889}}{18}=\frac{41+\sqrt{889}}{6}\\t=\frac{123-3\sqrt{889}}{18}=\frac{41-\sqrt{889}}{6}\end{cases}}\)
Lúc đó \(\orbr{\begin{cases}x^2=\frac{41+\sqrt{889}}{6}\\x^2=\frac{41-\sqrt{889}}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{41+\sqrt{889}}{6}}\\x=\pm\sqrt{\frac{41-\sqrt{889}}{6}}\end{cases}}\)
Vậy pt có 4 nghiệm \(S=\left\{\pm\sqrt{\frac{41+\sqrt{889}}{6}};\pm\sqrt{\frac{41-\sqrt{889}}{6}}\right\}\)
Sửa)):
a = -3 mà ghi lôn a = 3.giải tương tự như 3
a)CMR: 1/xy <= 1/4((1/x)+(1/y)) với mọi x, y>0. Dấu "=" xảy ra khi nào?
b)Cho a, b, c>0 và abc=ab+bc+ca. CMR: (1/(a+2b+3c))+(1/(2a+3b+c))+(1/(3a+b+2c))>=3/16
b)
Đề: Cho a, b, c > 0 và abc = ab + bc + ca. Chứng minh rằng: \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\le\frac{3}{16}\)
~ ~ ~ ~ ~
\(abc=ab+bc+ca\)
\(\Leftrightarrow1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\), ta có:
\(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\)
\(\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{2\left(b+c\right)}+\frac{1}{2\left(a+b\right)}+\frac{1}{b+c}+\frac{1}{2\left(a+c\right)}+\frac{1}{a+b}\right)\)
\(=\frac{1}{4}\left[\frac{3}{2\left(a+c\right)}+\frac{3}{2\left(b+c\right)}+\frac{3}{2\left(a+b\right)}\right]\)
\(=\frac{3}{8}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{a+b}\right)\)
\(\le\frac{3}{32}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{3}{16}\) (đpcm)
Dấu "=" xảy ra khi a = b = c
biết rằng a ,b,c thuộc z . cho hai tích -2a^5b^2 và 3a^2b^6 cùng dấu . tìm dấu của a ?cho a và b trái dấu , 3a^2^1980 và -19a^5b^1890 cùng dấu . xác định dấu của a và b ? b, cho x thuộc z và e=(1-x)^4. (-x). với điều kiện nào của x thì e =0 , e>0,e<0
giúp mik vs nhé càng nhanh càng tốt