Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thanh nguyen duy
Xem chi tiết
so so
Xem chi tiết
kudo shinichi
25 tháng 12 2018 lúc 21:48

\(A=13x^2+y^2+4xy-2y-16x+2015\)

\(A=\left(4x^2-4x+1\right)+2y\left(2x-1\right)+y^2+\left(9x^2-12x+4\right)+2010\)

\(A=\left(2x-1\right)^2+2y\left(2x-1\right)+y^2+\left(3x-2\right)^2+2010\)

\(A=\left(2x-1+y\right)^2+\left(3x-2\right)^2+2010\)

Đến đây bạn tự làm nốt nhé~

không làm được thì ib

Trần Minh Hưng
Xem chi tiết
Y.B.Đ.R.N (C27)
9 tháng 11 2017 lúc 19:37

A= 13x2 + y2+ 4xy -2y -16x + 2015

= (4x+y+1+4xy-2y-4x)2+((3x)2-12x+4) + 2010

=( 2x+y+1)2+(3x+2)2+2010

Ta có (2x+y+1)2 \(\ge\) 0 với mọi x

(3x+2)2 \(\ge\) 0 với mọi x

\(\Rightarrow\) ( 2x+y-1)2+(3x-2)2+2010 \(\ge\) 2010 với mọi x

A đạt GTNN là 2010 khi x= \(\dfrac{2}{3}\) , y=\(\dfrac{-1}{3}\)

Vũ Thị Thu Hà
Xem chi tiết
Đỗ Phương Chi
Xem chi tiết
★Čүċℓøρş★
16 tháng 12 2019 lúc 21:00

\(N = 5x^2 + 2y^ 2 + 4xy - 2x + 4y + 2015\)

\(N = ( 4x^ 2 + 4xy + y ^ 2 ) + ( x^2 - 2x + 1 )+\)

\(( y^2 + 4y + 4 ) + 2010\)

\(N = ( 2x + y )^2 + ( x - 1 )^2 + ( y + 2 )^2 + 2010\)

\(\ge\)\(2010\)

\(Dấu " = " xảy ra \)\(\Leftrightarrow\) \(2x + y = 0 và\)\(x - 1 = 0 và y + 2 = 0\)

\(\Rightarrow\)\(x = 1 và y = - 2\)

\(Min N = 2010\)\(\Leftrightarrow\)\(x = 1 và y = - 2\)

Khách vãng lai đã xóa
Hoàng Thị Vân
Xem chi tiết
Nguyễn Thị BÍch Hậu
8 tháng 6 2015 lúc 12:09

câu 2: gọi biểu thức là A đi

\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=1.\left[\left(a+b\right)^2-3ab\right]+ab=\left(a+b\right)^2-2ab=1-2ab\)

\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow ab\le\frac{1}{4}\)(chỗ 4ab là cộng 2 vế với 2ab đó)

\(\Leftrightarrow-ab\ge\frac{-1}{4}\Leftrightarrow-2ab\ge-\frac{1}{2}\Rightarrow1-2ab\ge\frac{1}{2}\Rightarrow A\ge\frac{1}{2}\Rightarrowđpcm\)

 

Nelson Charles
Xem chi tiết
Nguyễn Tuấn Hưng
Xem chi tiết
Phạm Thị Thùy Linh
30 tháng 6 2019 lúc 20:48

\(A=-x^2-5y^2+2xy-4x+20y+13\)

\(=-x^2+2xy-y^2-4y^2-4x+4y+16y+13\)

\(=-\left(x^2-2xy+y^2\right)-\left(4y^2-16y+16\right)-\left(4x-4y\right)+29\)

\(=-\left(x-y\right)^2-4\left(y-2\right)^2-4\left(x-y\right)-4+25\)

\(=-\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]-4\left(y-2\right)^2+25\)

\(=-\left(x-y+2\right)^2-4\left(y-2\right)^2+25\)

\(A_{max}=25\Leftrightarrow\hept{\begin{cases}\left(x-y+2\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y+2=0\\y=2\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Phạm Thị Thùy Linh
30 tháng 6 2019 lúc 20:55

\(B=-7x^2-y^2+4xy+16x-2y+17.\)

\(=-4x^2+4xy-y^2-3x^2+12x-12+4x-2y+29\)

\(=-\left(2x-y\right)^2-3\left(x-2\right)^2+2\left(2x-y\right)^2-1+30\)

\(=-\left[\left(2x-y\right)^2-2\left(2x-y\right)^2+1\right]-3\left(x-2\right)^2+30\)

\(=-\left(2x-y-1\right)^2-3\left(x-2\right)^2+30\)

\(\Rightarrow B_{max}=30\Leftrightarrow\hept{\begin{cases}\left(2x-y-1\right)^2=0\\\left(x-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-y-1=0\\x=2\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Nguyễn Tuấn Hưng
30 tháng 6 2019 lúc 21:28

Cảm on bn nhiều nhe

Nguyễn Huyền Trang
Xem chi tiết