Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
huongkarry
Xem chi tiết
Đinh Đức Hùng
19 tháng 6 2017 lúc 9:25

Gọi 3 số nguyên liên tiếp là a; a + 1; a + 2 (a thuộc Z)

Ta có \(\left[a+\left(a+1\right)+\left(a+2\right)\right]^3=\left(3a+3\right)^3=\left[3\left(a+1\right)\right]^3=27\left(a+1\right)^3⋮9\)

=> đpcm

Dũng Lê Trí
19 tháng 6 2017 lúc 9:30

Tổng lập phương mà Hùng :

\(a^3+\left(a+1\right)^3+\left(a+2\right)^3\)

IS
22 tháng 2 2020 lúc 20:09

a)Gọi ba số nguyên liên tiếp là a, a+1, a+2
ta có cấc+a+1+a+2=3a+3 
vì 3a chia hết cho 3
3 chia hết cho 3
nên tổng của 3 số nguyên liên tiếp thì chia hết cho 3
b)Gọi 5 số nguyên liên tiếp là a,a+1,a+2.a+3.a+4
ta có:a+a+1+a+2+a+3+a+4=10a+5 chia hết cho 5

chúc bạn học tốt !!!

Khách vãng lai đã xóa
Thư
Xem chi tiết
Nguyễn Phương Anh B
30 tháng 1 2021 lúc 22:02

Bạn sang hoidap247 sẽ đc giải quyết câu hỏi nhanh hơn nhé

Khách vãng lai đã xóa
Phan Thiện Minh 3
30 tháng 1 2021 lúc 22:24

くらにみくちなそちにきにしちんくちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちち

Khách vãng lai đã xóa
Xyz OLM
30 tháng 1 2021 lúc 22:32

Gọi số nguyên đó là a (a \(\inℤ\))

Ta có : a3 + (a + 1)3 + (a + 2)3

= a3 + a3 + 3a2 + 3a + 1 + a3 + 6a2 + 12a + 8

= 3a3 + 9a2 + 15a + 9

= 3a3 - 3a + 9a2 + 18a + 9

= 3a(a2 - 1) + 9(a2 + 2a  + 1)

= 3(a - 1)a(a + 1) + 9(a + 1)2

Vì (a - 1)a(a + 1) là tích 3 số nguyên liên tiếp

=> Tồn tại 1 số chia hết cho 3

=> 3(a - 1)a(a + 1) \(⋮\)9

=> 3(a - 1)a(a + 1) + 9(a + 1)2 \(⋮\)9

=> a3 + (a + 1)3 + (a + 2)3 \(⋮\)9 => ĐPCM

Khách vãng lai đã xóa
THẮNG SANG CHẢNH
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 5 2017 lúc 14:53

vua rắc rối
Xem chi tiết
Cố lên Tân
25 tháng 6 2015 lúc 21:08

 Gọi 3 số nguyên liên tiếp lần lượt là (a - 1), a, (a + 1) 
****chứng minh: (a - 1)^3 + a^3 + (a + 1)^3 chia hết cho 9 
(a - 1)^3 + a^3 + (a + 1)^3=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1 = 3a^3 + 6a 
= 3a(a^2 + 2) = 3a(a^2 - 1) + 9a 
= 3(a - 1)a(a + 1) + 9a 
vì tíck của 3 sôd tự nhiên liên tiếp chia hhết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9 
Mặt khác 9a chia hết cho 9 nên 
==>3(a - 1)a(a + 1) + 9a 

Đinh Tuấn Việt
25 tháng 6 2015 lúc 21:13

Oggy    copy

๖ۣۜNɦσƙ ๖ۣۜTì
27 tháng 6 2019 lúc 10:22

 Gọi 3 số nguyên liên tiếp lần lượt là (a - 1), a, (a + 1) 
****chứng minh: (a - 1)^3 + a^3 + (a + 1)^3 chia hết cho 9 
(a - 1)^3 + a^3 + (a + 1)^3

=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1

= 3a^3 + 6a 
= 3a(a^2 + 2)

= 3a(a^2 - 1) + 9a 
= 3(a - 1)a(a + 1) + 9a 
vì tíck của 3 sôd tự nhiên liên tiếp chia hhết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9 
Mặt khác 9a chia hết cho 9 nên 
=>3(a - 1)a(a + 1) + 9a 
hay ta đc điều phải chứng minh 

Dương Thu Hà
Xem chi tiết
MAI HUONG
Xem chi tiết
Sơn Lê
25 tháng 11 2015 lúc 17:29

Gọi 3 số nguyên liên tiếp là x -1 ; x ; x + 1 .

Ta có : (x - 1)3 + x3 + (x + 1)3

= x3 - 1 - 3x(x - 1) + x3 + x3 + 1 + 3x(x + 1)

= 3x3 - 3x(x - 1 - x - 1)

= 3x3 + 6x

= 3x3 - 3x + 9x

= 3(x - 1)x(x + 1) +9x

Vì (x - 1)x(x + 1) chia hết cho 3 nên 3(x - 1)x(x + 1) chia hết cho 9

Vì 9 chia hết cho 9 nên 9x chia hết cho 9

=> 3(x - 1)x(x + 1) + 9x chia hết cho 9

=> ĐPCM

 

♥➴Hận đời FA➴♥
Xem chi tiết
Boy bánh bèo
Xem chi tiết
OoO Kún Chảnh OoO
17 tháng 8 2015 lúc 13:38

hu hu.. ! lần này mình tự làm nếu còn giống của bạn nào thì đừng bảo mình coppy nhé ! cai nay tu minh biet nen minh tu lam day !

Gọi 3 số nguyên liên tiếp lần lượt là (a - 1), a, (a + 1) 
chứng minh: (a - 1)^3 + a^3 + (a + 1)^3 chia hết cho 9 
=>(a - 1)^3 + a^3 + (a + 1)^3=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1 = 3a^3 + 6a 
= >3a(a^2 + 2) = 3a(a^2 - 1) + 9a 
= >3(a - 1)a(a + 1) + 9a 
ta da biet tíck của 3 sô tự nhiên liên tiếp chia hhết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9 
Mặt khác 9a chia hết cho 9 nên 
=>3(a - 1)a(a + 1) + 9a 
hay ta dc điều phải chứng minh 

Phamthithutrang
31 tháng 1 2018 lúc 20:59

gọi ba số tự nhiên đó là a,a+1,a+2

theo bài ta có 

(a+a+1+a+2)3

=(a+a+a+1+2)3

=(a+a+a+3)3

=(a+a+a)3+27

mà (a+a+a)3 chia hết cho 3

nên (a+a+a)3 chia het cho 9

do 27 chia het cho 9

nen (a+a+a)3+27 chia het cho 9

vậy ............................