Cho tam giác ABC. Gọi M,N theo thứ tự là trung điểm của AB,AC.Chứng minh rằng ;
a)MN // BC
b)MN bằng một phần hai BC
Cho tam giác ABC gọi D,E theo thứ tự là trung điểm của cạnh AB và AC.Chứng minh rằng :
a)DE//BC b)DE=BC/2
: Cho tam giác nhọn ABC. Gọi M, N lần lượt là trung điểm của AB, AC.Chứng minh rằng tứ giác BMNC là hình thang
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
cho tam giac ABC vuông tại A, đường cao AH, gọi I, K theo thứ tự là trung điểm của AB, AC.Chứng minh rằng góc IHK=90o
1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IM
a. Tính góc BAC
b.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH
2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau
3)Cho tam giác ABC. Ở phía ngoài tam giác ấy vẽ tam giác đều ACE. Trên nửa mặt phẳng chứa C có bờ AB, vẽ tam giác đều ABD. Gọi H, K, M theo thứ tự là trung điểm của AB, AE, CD. Chứng minh rằng HKM là tam giác đều
4)Cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Chứng minh rằng EF=1/2CD
bài 1: cho tam giác ABC các đường trung tuyến BD, CE. gọi M,N theo thứ tự là trung điểm của BE,CD. gọi I,K theo thứ tự là giao điểm của MN với BD,CE chứng minh rằng MI = IK = KN
bài 2: cho tam giác ABC, M là trung điểm của BC. trên cạnh AB lấy D,E sao cho AD = DE = EB. gọi I là giao điểm của CD và AM. chứng minh I là trung điểm của AM
Giải
Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\) là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì
\(MI=KN=\frac{DE}{2}\left(1\right)\)
\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)
\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)
\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha
Cho tam giác ABC vuông tại A,trung tuyến AD.Gọi M,N theo thứ tự là điểm đối xứng của B,D qua AC.Chứng minh tứ giác ANCD là hình thoi
CHO TAM GIACS ABC CÓ AB +AC =2BC.GỌI I LÀ GIAO ĐIEẺM CÁC ĐƯỜNG PHÂN GIÁC TRONG CỦA TAM GIÁC.GỌI M;N THEO THỨ TỰ LÀ TRUNG ĐIỂM CỦA AB;AC.CHỨNG MINH RẰNG GÓC AMI+GOCS ANI =180 ĐỘ
CÁC BẠN CUUỨ MK VỚI.GIẢI BÀI NÀY BẰNG CẢ TIẾNG VIÊTJ VÀ TIÊNGS ANH HỘ MK NHÉ
Cho tam giác ABC. Lấy các điểm D,E theo thứ tự trên cạnh AB, AC sao cho BD = CE. Gọi M,N,I,K theo thứ tự là trung điểm của BE, CD, DE, BC. Chứng minh rằng IK vuông góc với MN.
*Trong ∆ BCD,ta có:
K là trung điểm của BC (gt)
N là trung điểm của CD (gt)
Nên NK là đường trung bình của ∆ BCD
⇒ NK // BD và NK = 1/2 BD (1)
*Trong ∆ BED,ta có:
M là trung điểm của BE (gt)
I là trung điểm của DE (gt)
Nên MI là đường trung bình của ∆ BED
⇒ MI // BD và MI = 1/2 BD (t/chất đường trung bình trong tam giác) (2)
Từ (1) và (2) suy ra: MI // NK và MI = NK
Nên tứ giác MKNI là hình bình hành.
*Trong ∆ BEC ta có MK là đường trung bình.
⇒ MK = 1/2 CE (t/chất đường trung bình của tam giác)
BD = CE (gt). Suy ra: MK = KN
Vậy hình bình hành MKNI là hình thoi.
⇒IK ⊥ MN (t/chất hình thoi).
1. Cho tam giác ABC, trung tuyến AM. GỌi I là trung điểm của AM, CI cắt AB ở K. Chứng minh AB = 3AK
2. Cho tam giác ABC không cân, đường cao AH gọi M,N,P theo thứ tự là trung điểm của AB,BC,CA. Chứng minh M,P,N,H là hình thang cân