Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho tam giác ABC. Lấy các điểm D,E theo thứ tự trên cạnh AB, AC sao cho BD = CE. Gọi M,N,I,K theo thứ tự là trung điểm của BE, CD, DE, BC. Chứng minh rằng IK vuông góc với MN.

Cao Minh Tâm
9 tháng 3 2019 lúc 6:01

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

*Trong BCD,ta có:

K là trung điểm của BC (gt)

N là trung điểm của CD (gt)

Nên NK là đường trung bình của  ∆ BCD

⇒ NK // BD và NK = 1/2 BD (1)

*Trong  ∆ BED,ta có:

M là trung điểm của BE (gt)

I là trung điểm của DE (gt)

Nên MI là đường trung bình của  ∆ BED

⇒ MI // BD và MI = 1/2 BD (t/chất đường trung bình trong tam giác) (2)

Từ (1) và (2) suy ra: MI // NK và MI = NK

Nên tứ giác MKNI là hình bình hành.

*Trong ∆ BEC ta có MK là đường trung bình.

⇒ MK = 1/2 CE (t/chất đường trung bình của tam giác)

BD = CE (gt). Suy ra: MK = KN

Vậy hình bình hành MKNI là hình thoi.

⇒IK ⊥ MN (t/chất hình thoi).


Các câu hỏi tương tự
anh_tuấn_bùi
Xem chi tiết
le thi thuy trang
Xem chi tiết
Lê Quang Anh
Xem chi tiết
Tran Anh Vu
Xem chi tiết
Hoàng Thu Hương
Xem chi tiết
Ngọc Đinh
Xem chi tiết
Pierro Đặng
Xem chi tiết
Linh Khánh
Xem chi tiết
Kun Kun
Xem chi tiết