Cho \(\frac{a}{b}\)= \(\frac{b}{3c}\)=\(\frac{c}{9a}\). CMR : b = c
giúp mình giải bài tập nha! mình sẽ tick cho!
bài 2:
a, cho \(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}.CMR:b=c\)
b, CMR: \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+......+\frac{1}{2013.2015}+\frac{1}{2014.2016}< \frac{3}{4}\)
Yêu cầu các CTV, các bạn làm sai giúp nhé! Nếu bạn muốn đáp án tham khảo thì sau đề vòng 1 mk sẽ giải nhé
1. Cho tam giác ABC vuông tại A. I là giao điểm của các đường phân giác trong tam giác ABC. CMR:
\(CI^2=\frac{\left(BC-AB\right)^2+AC^2}{2}\)
2. Cho \(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}\). CMR: b = c
\(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}=k\Rightarrow\hept{\begin{cases}a=b.k\\b=c.3k\\c=c.9k\end{cases}\Leftrightarrow abc=abc.27k^3.}\)
\(\Leftrightarrow k=\frac{1}{3}\Rightarrow\frac{b}{3c}=\frac{1}{3}\Rightarrow b=c.\)
Bài hình do ngại, mình chụp ảnh ko đưa lên đây dc. nên thôi nhé .
Cho \(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}\)CMR:b=c
Cho \(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}\)
Chứng minh rằng :b=c
Đặt a/b=b/3c=c/9a=k
Ta có: a/b=b/3c=c/9a
=>(a/b)3=(b/3c)3=(c/9a)3=(a.b.c)/(b.3c.9c)=1/27=k3
=>k= (1/3)
Ta có: b/3c=1/3
=>b=c (đpcm)
Cho \(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}\)
Chứng minh rằng :b=c
\(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}=k\Leftrightarrow\left(\frac{a}{b}\right)^3=\frac{a.b.c}{b.3c.9a}=\frac{1}{27}=k^3\Leftrightarrow k=\frac{1}{3}\)
\(\frac{b}{3c}=\frac{1}{3}\Leftrightarrow b=c\)
a,Cho \(\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}CMR:\frac{x}{a}=\frac{y}{2b}=\frac{z}{3c}\)
b, CHO \(\frac{b+c}{bc}=\frac{2}{a}CMR:\frac{b}{c}=\frac{a-b}{c-a}\)( cac ti so deu co nghia)
Bài 1:
Tìm x, y, z biết (x+z):(y+z):(7+z):(5-y)=2:3:10:6
Bài 2:
Cho: \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
a,CMR: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
b, Tìm a, b, c biết \(9a^2-ab^2+c^2=25\)
c, CMR \(2\left(a-b\right)\left(b-c\right)=a^2\)
Bài 2/a
Giả sử \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\Rightarrow\hept{\begin{cases}a=2k\\b=3k\\c=5k\end{cases}}\)
\(\Rightarrow\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
\(\Rightarrow\frac{3\cdot2k-2\cdot3k}{5}=\frac{2\cdot5k-5\cdot2k}{3}=\frac{5\cdot3k-3\cdot5k}{2}\)
\(\Rightarrow\frac{6k-6k}{5}=\frac{10k-10k}{3}=\frac{15k-15k}{2}\)
\(\Rightarrow\frac{0}{5}=\frac{0}{3}=\frac{0}{2}=0\left(đpcm\right)\)
Bài 2/c
Có a = 2k ; b = 3k ; c = 5k
=> 2 (a - b) (b - c) = a2
=> 2 (2k - 3k) (3k - 5k) = (2k)2
=> 2 (-1)k . (-2)k = 4k2
=> 4k2 = 4k2 (đpcm)
Mình chỉ làm được có vậy thôi, mong bạn thông cảm =))
Chúc bạn học tốt =))
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
\(\Rightarrow\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=0\)
\(\Rightarrow\hept{\begin{cases}\frac{15a-10b}{25}=0\\\frac{6c-15a}{9}=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3a-2b=0\\2c-5a=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3a=2b\\2c=5a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\end{cases}}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
cho a;b;c>0 thỏa mãn a+b+c=1.Tìm Max của bt:
\(A=\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+b}\)
Áp dụng BĐT AM-GM ta có:
\(9a^3+\frac{1}{3}+\frac{1}{3}\ge3\sqrt[3]{9a^3\cdot\frac{1}{3}\cdot\frac{1}{3}}=3a\)
\(3b^2+\frac{1}{3}\ge2\sqrt{3b^2\cdot\frac{1}{3}}=2b\)
Do đó: \(A\le\text{∑}\frac{a}{3a+2b+c-1}=\frac{a}{2a+b}\left(a+b+c=1\right)\)
\(2A\le\text{∑}\frac{2a}{2a+b}=3-\text{∑}\frac{b}{2a+b}=3-\text{∑}\frac{b^2}{2ab+b^2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(2A\le3-\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=3-\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\Leftrightarrow A\le1\)
Dấu "=" khi \(a=b=c=\frac{1}{3}\)
Cho \(\frac{a}{b}\) =\(\frac{b}{3c}\) =\(\frac{c}{9a}\)Chứng minh \(b=c\)
\(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}\)
\(\Leftrightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{3c}\right)^3=\left(\frac{c}{9a}\right)^3=\left(\frac{a.b.c}{b.3c.c.9a}\right)=\frac{1}{27}=k^3\)
\(\Leftrightarrow k=\left(\frac{1}{27}\div\frac{1}{27}\right)\div3=\frac{1}{3}\)
\(\Leftrightarrow\frac{b}{3c}=\frac{1}{3}\)
Vậy \(\Rightarrow b=c\left(đpcm\right)\)