giai hpt
\(\hept{\begin{cases}x^2-y^2+xy=3\\x-y-xy=3\end{cases}}\)
giair hpt
\(\hept{\begin{cases}x^2+xy-y^2=3\\x-y-xy=3\end{cases}}\)
giai hệ pt
\(\hept{\begin{cases}x^2+xy+y^2=3\\z^2+yz+1=0\end{cases}}\)
\(\hept{\begin{cases}x+6\sqrt{xy}-\sqrt{y}=0\\x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}=3\end{cases}}\)
Giải các HPT sau:
a) \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\\2\sqrt{xy-y}-\sqrt{y}=-1\end{cases}}\)
b) \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\\x-y+xy=3\end{cases}}\)
c) \(\hept{\begin{cases}2x+2y-\sqrt{xy}=3\\\sqrt{3x+1}+\sqrt{3y+1}=4\end{cases}}\)
d) \(\hept{\begin{cases}x^3\left(2+3y\right)=8\\x\left(y^3-2\right)=6\end{cases}}\)
p/s: m.n giúp mk nha, ko cần phải làm hết đâu :)
a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)
Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)
Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:
\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)
\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)
\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)
\(\Rightarrow1-\sqrt{x}\ge0\)
\(\Leftrightarrow x\le1\)
Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1
b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)
Xét pt (1) ta có
\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)
Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành
\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)
\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)
Tới đây đơn giản rồi làm tiếp nhé
c/ \(\hept{\begin{cases}2x+2y-\sqrt{xy}=3\\\sqrt{3x+1}+\sqrt{3y+1}=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+2y-\sqrt{xy}=3\\3x+3y+2+2\sqrt{9xy+3x+3y+1}=16\end{cases}}\)
Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\)thì ta có
\(\hept{\begin{cases}2a-\sqrt{b}=3\\3a+2\sqrt{9b+3a+1}=14\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=4a^2-12a+9\\3a+2\sqrt{36a^2-105a+82}=14\end{cases}}\)
Tiếp tục chuyển vế pt dưới rồi bình phương 2 vế tìm được a có a suy ra b từ đây tìm được x, y
giai hpt\(\hept{\begin{cases}x^2+y^2+2x+2y=11\\xy\left(x+2\right)\left(y+2\right)=24\end{cases}}\)
Giải hpt :
\(\hept{\begin{cases}x^2+y^2+xy=1\\x^3+y^3=x+3y\end{cases}}\)
Do \(x^2+y^2+xy=1\Rightarrow x-y=\left(x-y\right)\left(x^2+y^2+xy\right)=x^3-y^3\)
Tức là ta có hệ mới \(\hept{\begin{cases}x^3-y^3=x-y\\x^3+y^3=x+3y\end{cases}}\)
Trừ từng vế của phương trình dưới cho phương trình trên, ta có \(2y^3=4y\Rightarrow2y\left(y^2-2\right)=0\Rightarrow\orbr{\begin{cases}y=0\\y=\sqrt{2}\vee y=-\sqrt{2}\end{cases}}\)
Nếu y = 0 thì \(x^2=1\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Nếu \(y=\sqrt{2}\) thì \(x^2+2+\sqrt{2}x=1\Rightarrow x^2+\sqrt{2}x+1=0\) (Vô nghiệm)
Nếu \(y=-\sqrt{2}\) thì \(x^2+2-\sqrt{2}x=1\Rightarrow x^2-\sqrt{2}x+1=0\) (Vô nghiệm)
Tóm lại phương trình có 2 nghiệm \(\left(1;0\right)\) và \(\left(-1;0\right).\)
giải HPT \(\hept{\begin{cases}x^2+xy^2-xy-y^3=0\\2\sqrt{y}-2\left(x^2+1\right)-3\sqrt{x}\left(y+1\right)-y=0\end{cases}}\)
bạn y nhân tạo của mũ a rồi cộng vào là ra được kết quả thôi mình thấy dễ mà
Trả lời :
Bn Lê Thanh Vân bn y ở đâu ra ??
- Hok tốt !
^_^
GIẢI HPT
A,\(\hept{\begin{cases}3Y^3=Y^2+2X^2\\3X^3=X^2+2Y^2\end{cases}}\)
B,\(\hept{\begin{cases}X\sqrt{X}-8\sqrt{Y}=\sqrt{X}+Y\sqrt{Y}\\X-Y=5\end{cases}}\)
C,\(\hept{\begin{cases}X^2+Y^2+XY+2Y+X=2\\2X^2-Y^2-2Y-2=0\end{cases}}\)
D,\(\hept{\begin{cases}X^3+Y^3=2X^2Y^2\\2Y+X=3XY\end{cases}}\)
E,\(\hept{\begin{cases}X^4-X^3Y+X^2Y^2=1\\X^3Y-X^2+XY=-1\end{cases}}\)
A CHỊ NÀO GIỎI GIẢI KĨ GIÚP E VỚI
MAI E ĐI HOK RỒI
EM SẼ TIXKS CHO
GIẢI HPT
A,\(\hept{\begin{cases}3Y^3=Y^2+2X^2\\3X^3=X^2+2Y^2\end{cases}}\)
B,\(\hept{\begin{cases}X\sqrt{X}-8\sqrt{Y}=\sqrt{X}+Y\sqrt{Y}\\X-Y=5\end{cases}}\)
C,\(\hept{\begin{cases}X^2+Y^2+XY+2Y+X=2\\2X^2-Y^2-2Y-2=0\end{cases}}\)
D,\(\hept{\begin{cases}X^3+Y^3=2X^2Y^2\\2Y+X=3XY\end{cases}}\)
E,\(\hept{\begin{cases}X^4-X^3Y+X^2Y^2=1\\X^3Y-X^2+XY=-1\end{cases}}\)
E MỚI HOK HỆ NÊN CHƯA GIẢI ĐC
A CHI NÀO GIỎI GIẢI KĨ GIÚP E
E SẼ TICK CHO
Giải hệ pt:
a)\(\hept{\begin{cases}x+3y-xy=3\\x^2_{ }+y^2+xy=3\end{cases}}\)
b)\(\hept{\begin{cases}x^2-xy+y^2=1\\x^2+2xy-y^2-3x-y=-2\end{cases}}\)
c)\(\hept{\begin{cases}x^2+y^2=2x^2y^2\\\left(x+y\right)\left(1+xy\right)=4x^2y^2\end{cases}}\)
d)\(\hept{\begin{cases}x^2-xy+y^2=1\\x^2+xy+2y^2=4\end{cases}}\)