Tìm n sao cho n2 + 10n + 1964 là số chính phương
Tìm số tự nhiên a sao cho: a2 + 10a + 1964 là số chính phương?
Bài khá dễ nhé bạn :
\(a^2+10a+25+1939=n^2\Rightarrow\left(a+5\right)^2+1939=n^2\Rightarrow\left(a+5-n\right)\left(a+5+n\right)=1939\)
\(\left(a+5-n\right)\left(a+5+n\right)=1.1939=7.277\)
Ta có 2 TH ( vì a+5+n > a+5 -n ) sau :
\(\hept{\begin{cases}a+5-n=1\\a+5+n=1939\end{cases}}\)và \(\hept{\begin{cases}a+5-n=7\\a+5+n=277\end{cases}}\)
TH1:
\(2a+10=1940\Rightarrow a=\frac{1940-10}{2}=965\)( loại khi thử lại )
TH2:
\(2a+10=284\Rightarrow a=137\)(loại khi thử lại )
Suy chẳng có số nào thõa mãn đề bài trên
Tìm a thuộc số nguyên dương sao cho a 2+10a+1964 là số chính phương
Tìm n thuộc N sao cho n2+2n+30 là số chính phương
tìm n sao cho n2 +404 là số chính phương
\(n^2+404=a^2\Leftrightarrow\left(a-n\right)\left(a+n\right)=1.404=4.101=2.202\)
+a -n =4 và a+n =101 => n =(101-4):2 = loại
+a-n=1 ; a +n =404 => n = (404 -1):2 =loại
+ a -n =2 ; a+n =202 => n =(202 -2 ) :2 = 100
Vậy n =100
Tìm các số tự nhiên n sao cho n2 16n 2011 là 1 số chính phương
Tìm tất cả các số tự nhiên n sao cho \(6n^2+10n+\sqrt{n^2+2n+52}+2018\) là số chính phương.
2. Tìm các số tự nhiên n thoả mãn n2 +3n+2 là số nguyên tố.
3. Tìm các số tự nhiên n sao cho 2n +34 là số chính phương.
4. Chứng minh rằng tổng S = 14 +24 +34 +···+1004 không là số chính phương.
5. Tìm các số nguyên dương a ≤ b ≤ c thoả mãn abc,a+b+c,a+b+c+2 đều là các số nguyên tố
Mik gấp
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
2: A=n^2+3n+2=(n+1)(n+2)
Để A là số nguyên tố thì n+1=1 hoặc n+2=2
=>n=0
Câu 1 :a. Tìm n để n2+ 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3 . Hỏi n2 là 2006 là số nguyên tố hay hợp số .
Câu 2 : Tìm tất cả các số tự nhiên có 3 chữ số abc sao cho abc = n2 - 1 và cba = ( n-2 ).2
Bạn nào trả lời giúp mình đi
Tham khảo câu hỏi tương tự nhé bạn .
Tick tớ đc chứ
CMR nếu n là số tự nhiên sao cho n+1 và n2+1 đều là các số chính phương thì n là bội của số 24
Giải cụ thể, chính xác cho mình nhé! ^^
Vì 2n+1 là số chính phương lẻ nên
2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4
Do đó n+1 cũng là số lẻ, suy ra
n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8
Lại có
(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2
Ta thấy
3n+2≡2(mod3)3n+2≡2(mod3)
Suy ra
(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên
n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)
Do đó
n⋮3n⋮3
Vậy ta có đpcm.