rút gọn
\(\frac{\sqrt{10}-2}{5-\sqrt{10}}\)
Rút gọn căn thức :
A = \(\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)\(\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
a) Rút gọn biểu thức:
\(P=\frac{5+\sqrt{10}+\sqrt{17}}{2}\left(\frac{5+\sqrt{10}+\sqrt{17}}{2}-5\right)\left(\frac{5+\sqrt{10}+\sqrt{17}}{2}-\sqrt{10}\right)\left(\frac{5+\sqrt{10}+\sqrt{17}}{2}-\sqrt{17}\right).\)
b) Giải phương trình: \(\frac{x+2}{2x-1}+|\frac{4x-2}{x+2}|+1=0\)
rút gọn
\(\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
Rút gọn :
A= \(\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\frac{\sqrt{10}+2\sqrt{6}+\sqrt{40+10\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\frac{\sqrt{10}+2\sqrt{6}+\sqrt{\left(5+\sqrt{15}\right)^2}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\frac{\sqrt{4}+\sqrt{6}+\sqrt{10}+\sqrt{6}+\sqrt{9}+\sqrt{15}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)+\sqrt{3}\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\sqrt{2}+\sqrt{3}\)
A = \(\frac{\sqrt{10}+2\sqrt{6}+5+\sqrt{15}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
A= \(\frac{\left(\sqrt{2}^2+2\sqrt{2}\sqrt{3}+\sqrt{3}^2\right)+\sqrt{10}+\sqrt{15}}{MC}\)
A= \(\frac{\left(\sqrt{2}+\sqrt{3}\right)^2+\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
A= \(\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}\)
A= \(\sqrt{2}+\sqrt{3}\)
cách nào ngắn bạn làm nhé:)) ( cười khinh thk ah t )
câu trả lời của t đâu mất rồi.
rút gọn biểu thức: P=\(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
Bạn tham khảo lời giải tại đây:
Rút gọn
A= \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
B= \(\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
\(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}.\)
\(\Rightarrow A^2=4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{2}}\right)\left(4-\sqrt{10+2\sqrt{2}}\right)}+4-\sqrt{10+2\sqrt{5}}\)
\(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)
\(=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{5-2\sqrt{5.1}+1}=8+2\left(\sqrt{5}-1\right)\)
\(=8+2\sqrt{5}-2=6+2\sqrt{5}\)
\(=\left(\sqrt{5}+1\right)^2\)
\(\Rightarrow A=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)
\(B=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
\(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)
\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)
\(=-\frac{1}{4}\left(1-\sqrt{5}+\sqrt{5}-\sqrt{9}+....+\sqrt{2001}-\sqrt{2005}\right)\)
\(=-\frac{1}{4}\left(1-\sqrt{2005}\right)\)
\(=10,94430659\)
\(\text{Lm hơi vắn tắt thông cảm nha!!}\)
rút gọn biểu thức ;
\(p=\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
Rút gọn \(\frac{\sqrt{7-2\sqrt{10}}\left(7+2\sqrt{10}\right)\left(74-22\sqrt{10}\right)}{\sqrt{125}-4\sqrt{50}+5\sqrt{20}+\sqrt{8}}\)
rút gọn Q= ($\frac{\sqrt{x+2} }{x-2\sqrt{x}+4 }$ - $\frac{x-\sqrt{x} }{x\sqrt{x} +8 }$ ). $\frac{5x-10\sqrt{x}+20 }{5\sqrt{x}+4}$
Tử số của phân số đầu phải là \(\sqrt{x}+2\) chứ không phải \(\sqrt{x+2}\), vì cái \(\sqrt{x}+2\) nó mới logic để rút gọn: )
\(Q=\left(\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}^3+8}-\dfrac{x-\sqrt{x}}{\sqrt{x}^3+8}\right)\left(\dfrac{5x-10\sqrt{x}+20}{5\sqrt{x}+4}\right)\\ =\left(\dfrac{x+4\sqrt{x}+4-x+\sqrt{x}}{\sqrt{x}^3+8}\right)\left(\dfrac{5x-10\sqrt{x}+20}{5\sqrt{x}+4}\right)\\ =\dfrac{\left(5\sqrt{x}+4\right).5.\left(x-2\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)\left(5\sqrt{x}+4\right)}\\ =\dfrac{5}{\sqrt{x}+2}\)
rút gọn biểu thức: P=\(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)