cho tam giác ABC vuông tại A, AB=4,AC=5. Đương cao AH .Kẻ HE vuông AB, HF vuông AC
a, Tính Diện tích tam giác ABC? Tính EF
b, kẻ AM vuông EF. M thuộc BC . Chứng minhM là Trung điểm BC
c, tính diện tích tam giác AHM
Cho \(\Delta ABC\) có A = 75 độ ,C = 45 độ ,AB=10 cm
a, Kẻ AH vuông BC .Tính BH,AC và diện tích tam giác ABC
b, Kẻ HE vuông AB ,HF vuông AC .Chứng minh rằng AE.AB=AF.AC
c, Gọi M,N lần lượt là trung điểm của AH,EF .Chứng minh rằng MN vuông EF
a) Xét ΔABC vuông tại A có \(\widehat{ACB}=45^0\)(gt)
nên ΔABC vuông cân tại A(Định lí tam giác vuông cân)
Suy ra: AB=AC
mà AB=10cm(gt)
nên AC=10cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{10^2}+\dfrac{1}{10^2}=\dfrac{2}{100}=\dfrac{1}{50}\)
\(\Leftrightarrow AH^2=50\)
hay \(AH=5\sqrt{2}\left(cm\right)\)
Xét ΔABH vuông tại H có \(\widehat{B}=45^0\)(ΔABC vuông cân tại A)
nên ΔABH vuông cân tại H
Suy ra: BH=AH
mà \(AH=5\sqrt{2}\left(cm\right)\)(cmt)
nên \(BH=5\sqrt{2}\left(cm\right)\)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{10\cdot10}{2}=50\left(cm^2\right)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
Cho \(\Delta ABC\) có A = 75 độ ,C = 45 độ ,AB=10 cm
a, Kẻ AH vuông BC .Tính BH,AC và diện tích tam giác ABC
b, Kẻ HE vuông AB ,HF vuông AC .Chứng minh rằng AE.AB=AF.AC
c, Gọi M,N lần lượt là trung điểm của AH,EF .Chứng minh rằng MN vuông EF
Cho tam giác ABC vuông tại A có AH là đường cao
a) Biết AC = 16cm; BC = 20cm. Tính CH, AH
b) Kẻ HE vuông góc với AB tại E, kẻ HF vuông góc với AC tại F. Tính góc ABC và góc AFE (Làm tròn đến độ)
c) Kẻ AM là trung tuyến của tam giác ABC, AM cắt EF tại I. Gọi O là giao điểm của AH và EF. Tính diện tích tứ giác OIMH. (Số gần đúng làm tròn đến chữ số thập phân thứ nhất)
Cho tam giác ABC vuông tại A có AB=5cm, AC=12cm, vẽ AH vuông góc BC.
a) Tính BC và AH
b) Qua H kẻ HE vuông góc AB, HF vuông góc AC. Tính EF
c) M và N là trung điểm của HB và HC, tính diện tích tứ giác MNFE.
Cho tam giác ABC vuông tại A có AB =6cm, AC =8cm, đường cao AH. Kẻ HE vuông góc với AB, HF vuông góc với AC.
a.Tính BC,AH,EF.
b.Gọi M,N lần lượt là trung điểm của HB, HC. Tứ giác MNFE là hình gì? Tính chu vi và diện tích tứ giác MNFE.
Cho tam giác ABC vuông tại A;AB=3cm; AC=4cm đường cao AH.kẻ HE vuông góc (E thuộc AB),HF vuông góc với AV (F thuộc AC) a)Chứng minh EF=AH b)Tính diện tích tam giác ABC và độ dài đoạn thẳng AH c) Goih M,N theo thứ tự là trung điểm của HB,HC.Tứ giác MNFE là hình gì?Vì sao?
a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>EF=AH
b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot4=2\cdot3=6\left(cm^2\right)\)
\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
Cho tam giác ABC vuông tại A (AB <AC). Gọi M là trung điểm của BC. Vẽ ME vuông góc với AB, MF vuông góc với AC.
a) Chứng minh AM=EF
b) Vẽ đường cao AH. Giả sử AB=6cm, BC=10 cm. Tính diện tích tam giác ABC, từ đó suy ra độ dài đoạn thẳng AH?
c) Chứng minh tứ giác EFMH là hình thang cân.
d) Giả sử và BC = a. Tính diện tich tứ giác AEMF theo a.
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
Suy ra: AM=EF
b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
=>AH=4,8cm
c: Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MF//AB
Do đó: F là trung điểm của AC
Ta có: ΔAHC vuông tại H
mà HF là đường trung tuyến
nên HF=AC/2=AF
mà AF=ME
nên HF=ME
Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: FE là đường trung bình
=>FE//BC
Xét tứ giác EHMF có
MH//FE
Do đó: EHMF là hình thang
mà EM=HF
nên EHMF là hình thang cân
Cho tam ABC có góc A bằng 90 độ và đường cao AH ( H thuộc BC) kẻ HE và HF lần lượt vuông góc với AB và AC tại E,F
1, chứng minh AEHF là hcn và tính EF , CF
2, tính diện tích tứ giác AEHF
3, tính diện tích tứ giác BEFC
1: Xét tứ giác AEHF có
\(\widehat{FAE}=\widehat{AFH}=\widehat{AEH}=90^0\)
Do đó: AEHF là hình chữ nhật
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm. Kẻ đường cao AH. Vẽ HE, HF vuông góc với AB, AC
a) Tính độ dài các đoạn thẳng BC, AH, EF
b) Gọi M, N lần lượt là trung điểm của HB và HC. Tứ giác MNFE là hình gì? Tính diện tích tứ giác MNFE