Chứng tỏ rằng 7+7^2+7^3+7^4+...+7^2014 chia hết cho 8
Chứng tỏ rằng
a,52016 + 52015 + 52014 chia hết cho 31
b,1+ 7+ 72+ 73+......+ 7101 chia hết cho 8
c,439 + 440 + 441 chia hết cho 28
a, 5^2016+5^2015+5^2014=5^2014x(5^2+5+1)=5^2014x 31=> chia hết cho 31
b, 1+7+7^2+7^3+...7^101= (1+7)+(7^2+7^3)+...+(7^100+7^101)=1x(1+7)+7^2x(1+7)+...+7^100x(1+7)=1x8+7^2x8+...+7^100x8
=8x(1+7^2+...7^100)=>chia hết cho 8
c,4^39+4^40+4^41=4^38x4+4^38x4^2+4^38x4^3=4^38x(4+16+64)=4^38x84=> chia hết cho 28
a/ 52016+52015+52014=52014(52+5+1)=31.52014 => Chia hết cho 31
b/ 1+7+72+73+...+7101 Có tổng 101+1=102 số hạng. Nhóm 2 số hạng liên tiếp với nhau ta được 51 nhóm như sau:
(1+7)+(72+73)+...+(7100+7101)=(1+7)+72(1+7)+...+7100(1+7)
= (1+7)(1+72+...+7100)=8.(1+72+...+7100) => Chia hết cho 8
c/ 439+440+441=439(1+4+42)=439.21=438.4.7.3=3.438.28
=> Chia hết cho 28
a/ 52016+52015+52014=52014(52+5+1)=31.52014 => Chia hết cho 31
b/ 1+7+72+73+...+7101 Có tổng 101+1=102 số hạng. Nhóm 2 số hạng liên tiếp với nhau ta được 51 nhóm như sau:
(1+7)+(72+73)+...+(7100+7101)=(1+7)+72(1+7)+...+7100(1+7)
= (1+7)(1+72+...+7100)=8.(1+72+...+7100) => Chia hết cho 8
c/ 439+440+441=439(1+4+42)=439.21=438.4.7.3=3.438.28
=> Chia hết cho 28
chứng tỏ rằng
1] 1+ 4+4^2+4^3+...+4^2012 chia hết cho 21
2] 1+7+7^2+7^3+...7^101 chia hết cho 8
3] 2+2^2+2^3+...+2^100 chia hết cho 31 và 5
1) \(1+4+4^2+4^3+...+4^{2012}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21+21\cdot4^3+...+21\cdot4^{2010}\)
\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21
2) \(1+7+7^2+7^3+...+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+8\cdot7^2+...8\cdot7^{100}\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8
3) CM chia hết cho 5:
\(2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)
\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)
\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5
CM chia hết cho 31:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\cdot31+...+2^{96}\cdot31\)
\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31
Chứng tỏ rằng 7^1+7^2+7^3+7^4+7^5+7^6 chia hết cho 8
nhanh nhé chiều mik đi học rùi
\(7+7^2+7^3+7^4+7^5+7^6\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+\left(7^5+7^6\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+7^5\left(1+7\right)\)
\(=8\left(7+7^3+7^5\right)\)\(⋮8\)(điều phải chứng minh)
Không tính tổng,hãy chứng tỏ rằng
\(M=7^1+7^2+7^3+7^4+7^5+7^6⋮8\)chia hết cho 8
\(M=7^1+7^2+7^3+7^4+7^5+7^6\)
\(\Rightarrow M=\left(7^1+7^2\right)+\left(7^3+7^4\right)+\left(7^5+7^6\right)\)
\(\Rightarrow M=7.\left(1+7\right)+7^3.\left(1+7\right)+7^5.\left(1+7\right)\)
\(\Rightarrow M=7.8+7^3.8+7^5.8\)
\(\Rightarrow M=8.\left(7+7^3+7^5\right)⋮8\left(ĐPCM\right)\)
=7(7^0+7^1+7^2+7^3+7^4+7^5)
=7*19608
mà 19608 chia hết cho 8
Suy ra: 7*19608chia hết cho 8
Suy ra: 7^1+7^2+7^3+7^4+7^5+7^6 chia hết cho 8
Bạn nên tham khảo cách nào làm ko cần phải tính lâu nhé
Cho B=4^1+4^2+4^3+...+4^20 Chứng tỏ B Chia hết cho 5
Cho C=7+7^2+7^3+...7^20 Chứng tỏ C chia hết cho 8
\(B=4+4^2+4^3+...+4^{20}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{19}+4^{20}\right)\)
\(=4.\left(1+4\right)+4^3.\left(1+4\right)+....+4^{19}.\left(1+4\right)\)
\(=5.\left(4+4^3+...+4^{19}\right)⋮5\)
Vậy B chia hết cho 5
\(C=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{19}+7^{20}\right)\)
\(=7.\left(1+7\right)+7^3.\left(1+7\right)+....+7^{19}.\left(1+7\right)\)
\(=7.8+7^3.8+...+7^{19}.8\)
\(=8.\left(7+7^3+...+7^{19}\right)⋮8\)
Vậy C chia hết cho 8
mình chưa học đến thông cảm nhé
1) Chứng minh rằng 102014 + 8 / 72 ( phân số ) là một số tự nhiên
2) Cho abc chia hết cho 7. Chứng tỏ rằng 2a + 3b + c chia hết cho 7
Bài 7. Chứng tỏ rằng:
a) A=\(1+4+4^2+4^3+...+4^{2012}\) chia hết cho 21
b) B=\(1+7+7^2+7^3+...+7^{101}\) chia hết cho 8
\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)
\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)
\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)
Bài 1: Cho A=4+41+43+...4100
a) Tính A
b) Chứng tỏ rằng A chia hết cho 5; A chia hết cho 20; A chia hết cho 21
Bài 2: Cho B= 7+72+73+...7400
a) Tính B
b) Chứng tỏ rằng B chia hết cho 8; B chia hết cho 56; B chia hết cho 57
chứng tỏ rằng 71+72+73+74+75+76 chia hết cho 8
71+72+73+74+75+76
=7.(7+1) + \(7^3.\left(1+7\right)\)+ \(7^5.\left(1+7\right)\)
=\(7.8+7^3.8+7^5.8\)
=\(8.\left(7+7^3+7^5\right)\)
vì 8 \(⋮\)8 nên \(8.\left(7+7^3+7^5\right)⋮8\)
nên \(7^1+7^2+7^3+7^4+7^5+7^6\)chia hết cho 8
71+72+73+74+75+76
=(71+72) + (73+74) + (75+76)
=7(7+1) + 73(1+7) + 75(1+7)
=7x8 + 73x8 + 75x8
(vì mỗi số hạng chia hết cho 8)
71\(+\)72\(+\)73\(+\)..\(+\)76 \(⋮\) cho 8
=(71\(+\)72)+(73\(+\)74)+(75\(+\)76)
=7(1\(+\)7)\(+\)73(1\(+\)7)\(+\)75(1\(+\)7)
\(\Rightarrow\)7\(\times\)8\(+\)73\(\times\)8\(+\)75\(\times\)8
vì ta thấy 8\(⋮\)nên
\(\Rightarrow\)(7\(\times\)8\(+\)73\(\times\)8\(+\)75\(\times\)8)\(⋮\)8
hay( 71\(+\)72\(+\)....\(+\)76)\(⋮\)8 (đpcm)