Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lương Minh Nhật
Xem chi tiết
Nguyễn Tiến Phát
Xem chi tiết
Nguyễn Thị Mỹ Duyên
Xem chi tiết
Trường tiểu học Yên Trun...
Xem chi tiết
Đinh Tuấn Việt
20 tháng 7 2015 lúc 21:10

\(\frac{a}{b}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\frac{a}{b}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{a}{b}=1-\frac{1}{100}=\frac{99}{100}\)

Do đó a = 99k và b = 100k (k \(\in\) N*)

Còn chứng minh a chia hết cho 151 thì bạn xem lại đề, còn tùy vào k thì a mới chia hết cho 151.

Trường tiểu học Yên Trun...
Xem chi tiết
Jaki Natsumi
18 tháng 3 2016 lúc 20:28

MÀY LÀ CHÓ

Cô Nàng Họ Lê
Xem chi tiết
Nguyễn Tuấn Anh
11 tháng 8 2017 lúc 20:29

a, 8^8(8^2-8-8)=8^8.55 chia het cho 55

b,7^4(7^2=7-1)=7^4.5.11 chia het cho 11

c, 10^7(10^2=10=1)=10^7.111=2^7.5^7.111chia het cho 111

Cô Nàng Họ Lê
11 tháng 8 2017 lúc 20:31

ngắn z thôi á

Asari Tinh Nghịch
11 tháng 8 2017 lúc 20:45

a/  8^10-8^9-8^8

=8^8.8^2-8^8.8-8^8.1

=8^8.(8^2-8-1)

=8^8.55

Vì 55 chia hết cho 11=>8^8.55 chia hết cho 11 hay 8^10-8^9-8^8 chia hết cho 11 đpcm

c/  10^9+10^8+10^7

=10^7.10^2+10^7.10+10^7.1

=10^7.(10^2+10+1)

=10^7.111 

Vì 111 chia hết cho 111 nên 10^7.111 chia hết cho 111 hay 10^9+10^8+10^7 chia hết cho 111 đpcm 

b/

Hypergon
Xem chi tiết
Hypergon
11 tháng 12 2017 lúc 8:28

Câu b, chuyển 3^2010 thành 2^2010 nhé!

truong trong nhan
Xem chi tiết
tth_new
5 tháng 10 2018 lúc 19:40

Các bài trên gần giống nhau nên mình làm một bài thôi nhé!

a) \(B=1+7^1+7^2+...+7^{119}\)

\(2B=7^1+7^2+7^3+...+7^{120}\)

\(\Rightarrow2B-B=B=7^{120}-1\) 

Ta có:\(B=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{118}+7^{119}\right)\)

\(=\left(1+7\right)+7^2\left(1+7\right)+...+7^{118}\left(1+7\right)\)

\(=8\left(1+7^2+...+7^{118}\right)⋮8^{\left(đpcm\right)}\)

Hoàng Ninh
5 tháng 10 2018 lúc 19:54

\(B=1+7^1+7^2+7^3+.......+7^{119}\)

\(\Rightarrow7B=7+7^2+7^3+7^4+.....+7^{120}\)

\(\Rightarrow7B-B=\left(7+7^2+7^3+7^4+......+7^{120}\right)-\left(1+7^1+7^2+7^3+.......+7^{119}\right)\)

\(\Rightarrow6B=7^{120}-1\)

\(\Rightarrow B=\frac{7^{120}-1}{6}\)

B chia hết cho 8:

\(B=\left(1+7^1\right)+\left(7^2+7^3\right)+........+\left(7^{118}+7^{119}\right)\)

\(\Rightarrow B=\left(1+7^1\right)+7^2\left(1+7^1\right)+.......+7^{118}\left(1+7^1\right)\)

\(\Rightarrow B=8+7^2.8+........+7^{118}.8\)

\(\Rightarrow B=8\left(1+7^2+.......+7^{118}\right)⋮8\left(đpcm\right)\)

Các phần sau bạn làm tương tự

Chú ý: Khi muốn chứng minh chia hết bạn phải nhóm các số hạng sao cho mỗi cặp chia hết với số cho trước

tth_new
5 tháng 10 2018 lúc 19:57

Chết nhầm câu thu gọn B. =((

\(B=1+7^1+7^2+7^3+...+7^{119}\)

\(7B=7+7^2+7^3+...+7^{120}\)

\(7B-B=6B=7^{120}-1\Leftrightarrow B=\frac{7^{120}-1}{6}\)

nhem
Xem chi tiết
De Thuong
22 tháng 12 2015 lúc 9:24

Minh lam cau A) thoi duoc hong