Tim x€zbiet
/2/x-(-11)=21
tim ba so x;y;zbiet x-y=8;y-z=9;x+z=11
tra loi(x;y;z)=
tim x,y thuoc zbiet
a,(x+2).(3-x)=0
a) Để (x + 2) . (3 - x) = 0
=> x + 2 = 0 hoặc
3 - x = 0
Ta có :
Với \(\hept{\begin{cases}x+2=0\\3-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\x=3\end{cases}}}\)
truong hop1;x+2=0suy ra x=-2 truong hop2;3-x=0suy ra x=3
(x + 2).(3 - x) = 0
x + 2 = 0
hoặc
3 - x = 0
x =0 - 2
hoặc
x =3 - 0
x = -2
hoặc
x = 3
tim x,y,zbiet
(3x-5)2016+(y2-1)2018+(x-z)2100=0
Ta thấy : VT >= 0
Dấu "=" xảy ra <=> 3x-5=0 ; y^2-1=0 ; x-z=0
<=> x=z=5/3 ; y=-1 hoặc x=z=5/3 ; y=1
Vậy .........
Tk mk nha
\(\left(3x-5\right)^{2016}\ge0\)
\(\left(y^2-1\right)^{2018}\ge0\)
\(\left(x-z\right)^{2100}\ge0\)
suy ra \(\left(3x-5\right)^{2016}+\left(y^2-1\right)^{2018}+\left(x-z\right)^{2100}\ge0\)
Dấu bằng xảy ra khi và chỉ khi
\(\hept{\begin{cases}\left(3x-5\right)^{2016}=0\\\left(y^2-1\right)^{2018}=0\\\left(x-z\right)^{2100}=0\end{cases}}\)
\(\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)
\(\hept{\begin{cases}3x=5\\y^2=1\\x=z\end{cases}}\)
\(\hept{\begin{cases}x=\frac{5}{3}\\y=\pm1\\z=\frac{5}{3}\end{cases}}\)
T I C K nha
Tim x€z biet .
/2/x-(-11)=21
/2/x - ( - 11 ) = 21
2.x - ( - 11 ) = 21
2.x = 21 + ( - 11 )
2.x = 10
x = 10 : 2
x = 5
Vậy x = 5
(2/11*13+2/13*15+....+2/19*21)-x+221/231=4/3 tim x
\(\Leftrightarrow\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)-x+\dfrac{221}{231}=\dfrac{4}{3}\)
\(\Leftrightarrow\dfrac{10}{231}+\dfrac{221}{231}-x=\dfrac{4}{3}\)
=>1-x=4/3
hay x=-1/3
Tim X
a,X - 20/11 x 13 - 20/13 x 15 - 20/15 x 17 -...-20/53 x 55 = 3/11
b,1/21 + 1/28 +1/36 + ... +2/Xx(x + 1) = 2/9
Ta có : A=20/11×13 + 20/13×15 +20/15×17+...+20/53×55
A = 10 ×( 2/11×13+2/13×15+...12/53×55)
A = 10 ×(1/11-1/13+1/13-1/15+1/15-1/17+...+1/53-1/55)
A = 10 × (1/11-1/55)
A =10 × 4/55
A = 8/11
tim n thuoc zbiet (n+3) là bội của n^2 -7
n^2-7 la boi cua n+3
\(\frac{2}{7}x-\frac{1-x}{3}=\frac{-11}{21}\)
Tim x
Ta có:
\(\frac{2}{7}x-\frac{1-x}{3}=\frac{-11}{21}\)
\(\frac{2}{7}x-\left(\frac{1}{3}-\frac{1}{3}x\right)=\frac{-11}{21}\)
\(\frac{2}{7}x+\frac{1}{3}x-\frac{1}{3}=-\frac{11}{21}\)
\(\left(\frac{6}{21}+\frac{7}{21}\right)x=-\frac{11}{21}+\frac{7}{21}\)
\(\frac{13}{21}x=-\frac{4}{21}\)
\(x=-\frac{4}{21}:\frac{13}{21}=-\frac{4}{21}.\frac{21}{13}=-\frac{4}{13}\)
Vậy \(x=-\frac{4}{13}\)
\(\frac{2}{7}x-\frac{1-x}{3}=\frac{-11}{21}\Leftrightarrow6x-7+7x=-11\Leftrightarrow13x=-4\Leftrightarrow x=\frac{-4}{13}\)
Tim x
A,x - ( 20 / 11.13+20/13.15+20/15.17+...+20/53.55)=3/11
B,1/21+1/28+1/36+...+2/x.(x+1)=2/9
a) \(x-\left(\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(x-\frac{20}{2}.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10.\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10.\frac{4}{55}=\frac{3}{11}\)
\(x-\frac{8}{11}=\frac{3}{11}\)
x = 1
b) \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\) ( nhân cho cả tử và mẫu của các số hạng trên ( ngoại trừ 2/x.(x+1) ) là 2)
\(\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
\(2.\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(2.\left(\frac{1}{6}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{18}\)
=> x + 1 = 18
x = 17
\(a,x-\left(\frac{20}{11.13}+\frac{20}{13.15}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(\Rightarrow x-10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Rightarrow x-10\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Rightarrow x-\frac{8}{11}=\frac{3}{11}\)
\(\Rightarrow x=1\)
\(b,\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{18}=\frac{1}{x+1}\)
\(\Rightarrow x+1=18\Leftrightarrow x=17\)