Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Đức Quyết
Xem chi tiết
Nguyễn Vũ Thảo My
Xem chi tiết
Nhi Trần
5 tháng 2 2016 lúc 14:09

\(\cfrac{P}{P-a}=\cfrac{2P}{2P-2a}=\cfrac{2P}{a+b+b-2a}=\cfrac{2P}{-a+b+c}\)

Chứng minh tương tự => \(\cfrac{P}{P-b}=\cfrac{2P}{a-b+c} \)\(\cfrac{P}{P-c}=\cfrac{2P}{a+b-c}\)

=>VT=\(\cfrac{2P}{-a+b+c}+\cfrac{2P}{a-b+c}+\cfrac{2P}{a+b-c} \geq 2P\cfrac{(1+1+1)^2}{a+b +c}=9\)(Áp dụng bđt \(\cfrac{a^2}{x}+\cfrac{b^2}{y}+\cfrac{c^c}{z}\geq\cfrac{(a+b+c)^2}{x+y+z}\))

Ko cần bít
Xem chi tiết
Đông Tatto
19 tháng 3 2019 lúc 20:30

toán 8,9 khó chả ai trả lời cả khổ lắm!!!!!!

Incursion_03
19 tháng 3 2019 lúc 22:31

Vì a,b,c là độ dài 3 cạnh tam giác nên

\(\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}\)

Ta có : \(\left(p-a\right)\left(p-b\right)\left(p-c\right)=\left(\frac{a+b+c}{2}-a\right)\left(\frac{a+b+c}{2}-b\right)\left(\frac{a+b+c}{2}-c\right)\)

         \(=\frac{b+c-a}{2}.\frac{a+c-b}{2}.\frac{a+b-c}{2}=\frac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{8}\)

         \(=\frac{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}.\sqrt{\left(b+c-a\right)\left(c+a-b\right)}.\sqrt{\left(a+b-c\right)\left(c+a-b\right)}}{8}\)

          \(\le\frac{\frac{a+b-c+b+c-a}{2}.\frac{b+c-a+c+a-b}{2}.\frac{a+b-c+c+a-b}{2}}{8}\)

           \(=\frac{\frac{2b}{2}.\frac{2c}{2}.\frac{2a}{2}}{8}=\frac{abc}{8}\)

Dấu "=" <=> tam giác đó đều

Nguyễn Văn Hòai Bảo
Xem chi tiết
Tran Xuan dam
Xem chi tiết
s2 Lắc Lư  s2
27 tháng 3 2016 lúc 21:36

tui nghĩ là tính 8N rồi thay p tìn max 8N

s2 Lắc Lư  s2
27 tháng 3 2016 lúc 21:54

lm như tui bảo nha,,, thay 2p vào

ta có \(\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\le\frac{a+b-c+a+c-b}{2}=a\)

lm tt rồi nhân 3 vế vào  ta đc 8N <= 1

=> ........

Tran Huong
Xem chi tiết
Nguyễn Minh Đức Đức
15 tháng 3 lúc 22:29

a = 60cm

p = 160/2 = 80cm

p = \(\dfrac{a+b+c}{2}\) (1) => \(\dfrac{2p-a}{2}\) = \(\dfrac{b+c}{2}\)

Vì a, p là 1 hằng số nên để S đạt GTLN <=> (p-b) và (p-c) đạt GTLN

Áp dụng bđt Cosin, ta có:

\(\sqrt{\left(p-b\right)\left(p-c\right)}\) <= \(\dfrac{p-b+p-c}{2}\) = \(\dfrac{2p-b-c}{2}\)

=> \(\dfrac{S}{\sqrt{p\left(p-a\right)}}\) <= \(p-\dfrac{b+c}{2}\) = \(p-\dfrac{2p-a}{2}\) = \(\dfrac{a}{2}\)

=> 2S <= \(a\sqrt{p\left(p-a\right)}\) = \(60\sqrt{80.\left(80-60\right)}\) = 2400

=> S <= 1200 (\(cm^2\))

Dấu "=" xảy ra

<=> \(p-b\) = \(p-c\)

<=> b = c

Thay b = c vào (1), ta được:

p = \(\dfrac{a+2b}{2}\) => 80 = \(\dfrac{60+2b}{2}\) => b = c = 50 (cm)

=> đpcm

Tuấn
Xem chi tiết
Huỳnh Quang Sang
4 tháng 3 2018 lúc 20:06

Chu vi tam giác ABC là 3 + 5 +7 = 15
Ta có :
P ABC / P A'B'C' = AB / A'B'
<=> 15 / 55 = 3 / A'B'
=> A'B' = ( 55 x 3 )/ 15 = 11 cm
P ABC / P A'B'C' = AC / A'C'
<=> 15 / 55 = 5 / A'C'
=> A'C' = ( 55 x 5 ) / 15 = 55/3 cm
P ABC / P A'B'C' = BC / B'C'
<=> 15 / 55 = 7 / B'C'
=> B'C' = ( 55 x 7 ) / 15 = 77/3 cm

Huy Hoang
17 tháng 4 2020 lúc 10:51

A B C A' B' C'

\(\Rightarrow\Delta ABC\)đồng dạng \(\Delta A'B'C'\left(gt\right)\)

Áp dụng tính chất DTSBN , ta có :

\(\frac{AB}{A'B'}=\frac{AC}{A'C'}=\frac{BC}{B'C'}=\frac{AB+AC+BC}{A'B'+A'C'+B'C'}=\frac{C_{ABC}}{C_{A'B'C'}}\)

Hay \(\frac{3}{A'B'}=\frac{7}{B'C'}=\frac{5}{A'C'}=\frac{C_{ABC}}{55}=\frac{3+5+7}{55}=\frac{15}{55}=\frac{3}{11}\)

Với CABC và CA'B'C'  lần lượt là chu vi của tam giác ABC , A'B'C' 

\(+)\frac{3}{A'B'}=\frac{3}{11}\Rightarrow A'B'=\frac{3.11}{3}=11cm\)

\(+)\frac{7}{A'C'}=\frac{3}{11}\Rightarrow B'C'=\frac{7.11}{3}\approx25,67cm\)

\(+)\frac{5}{A'C'}=\frac{3}{11}\Rightarrow A'C'=\frac{5.11}{3}\approx18,33cm\)

Khách vãng lai đã xóa
QUan
Xem chi tiết
Hoàng Lê Bảo Ngọc
10 tháng 12 2016 lúc 20:39

Đề đúng : \(a^2+b^2+c^2+2abc< 2\)

Ta có : \(a+b+c=2\)

Áp dụng BĐT tam giác, ta có \(a+b>c\Leftrightarrow2>2c\Leftrightarrow c< 1\)

Tương tự : \(b< 1,a< 1\)

Suy ra \(\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)

\(\Leftrightarrow\left(1-a-b+ab\right)\left(1-c\right)>0\)

\(\Leftrightarrow1-a-b+ab-c+ac+bc-abc>0\)

\(\Leftrightarrow a+b+c-\left(ab+bc+ac\right)+abc< 1\)

\(\Leftrightarrow2\left(a+b+c\right)-2\left(ab+bc+ac\right)+2abc< 2\)

\(\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ac\right)+2abc< 2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< 2\) (đpcm)

Nguyễn Khánh Nhi
Xem chi tiết