cho tam giác ABC, độ dài 3 cạnh là a,b,c chu vi là 2p ,cm S^2=p(p-a)(p-b)(p-c)
Cho a, b, c là độ dài 3 cạnh của một tam giác và cps chu vi là 2p. CMR:
abc/8 >= (p-a) (p-b) (p-c)
Cho tam giác ABC có độ dài 3 cạnh: BC = a, AC = b, AB = c, chu vi tam giác là 2P. Chứng minh:
\(\frac{P}{P-a}+\frac{P}{P-b}+\frac{P}{P-c}\ge9\)
\(\cfrac{P}{P-a}=\cfrac{2P}{2P-2a}=\cfrac{2P}{a+b+b-2a}=\cfrac{2P}{-a+b+c}\)
Chứng minh tương tự => \(\cfrac{P}{P-b}=\cfrac{2P}{a-b+c} \); \(\cfrac{P}{P-c}=\cfrac{2P}{a+b-c}\)
=>VT=\(\cfrac{2P}{-a+b+c}+\cfrac{2P}{a-b+c}+\cfrac{2P}{a+b-c} \geq 2P\cfrac{(1+1+1)^2}{a+b +c}=9\)(Áp dụng bđt \(\cfrac{a^2}{x}+\cfrac{b^2}{y}+\cfrac{c^c}{z}\geq\cfrac{(a+b+c)^2}{x+y+z}\))
Cho a, b, c là độ dài 3 cạnh của tam giác với chu vi 2p. CMR:
\(\left(p-a\right)\left(p-b\right)\left(p-c\right)\le\frac{abc}{8}\)
toán 8,9 khó chả ai trả lời cả khổ lắm!!!!!!
Vì a,b,c là độ dài 3 cạnh tam giác nên
\(\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}\)
Ta có : \(\left(p-a\right)\left(p-b\right)\left(p-c\right)=\left(\frac{a+b+c}{2}-a\right)\left(\frac{a+b+c}{2}-b\right)\left(\frac{a+b+c}{2}-c\right)\)
\(=\frac{b+c-a}{2}.\frac{a+c-b}{2}.\frac{a+b-c}{2}=\frac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{8}\)
\(=\frac{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}.\sqrt{\left(b+c-a\right)\left(c+a-b\right)}.\sqrt{\left(a+b-c\right)\left(c+a-b\right)}}{8}\)
\(\le\frac{\frac{a+b-c+b+c-a}{2}.\frac{b+c-a+c+a-b}{2}.\frac{a+b-c+c+a-b}{2}}{8}\)
\(=\frac{\frac{2b}{2}.\frac{2c}{2}.\frac{2a}{2}}{8}=\frac{abc}{8}\)
Dấu "=" <=> tam giác đó đều
Cho tam giác ABC có ba cạnh a,b,c và có chu vi 2p, diện tích S thỏa \(\frac{\sqrt{3}}{36}\)(a+b+c)^2. Hỏi tam giác ABC là tam giác gì ?
Cho tam giác có độ dài ba cạnh abc và chu vi là 2p hay tim giá trị lớn nhất của biểu thức: N= ((p-a)(p-b)(p-c))/abc
tui nghĩ là tính 8N rồi thay p tìn max 8N
lm như tui bảo nha,,, thay 2p vào
ta có \(\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\le\frac{a+b-c+a+c-b}{2}=a\)
lm tt rồi nhân 3 vế vào ta đc 8N <= 1
=> ........
cho tam giác ABC có một cạnh bằng 60 cm và chu vi bằng 160cm . Tìm độ dài hai cạnh còn lại để tam giác ABC có diện tích lớn nhất(cho biết diện tích tam giác có độ dài ba cạnh là a,b,c có thể tính bằng công thức sau:
S=\(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)_{ }}\);p=(a+b+c):2
a = 60cm
p = 160/2 = 80cm
p = \(\dfrac{a+b+c}{2}\) (1) => \(\dfrac{2p-a}{2}\) = \(\dfrac{b+c}{2}\)
Vì a, p là 1 hằng số nên để S đạt GTLN <=> (p-b) và (p-c) đạt GTLN
Áp dụng bđt Cosin, ta có:
\(\sqrt{\left(p-b\right)\left(p-c\right)}\) <= \(\dfrac{p-b+p-c}{2}\) = \(\dfrac{2p-b-c}{2}\)
=> \(\dfrac{S}{\sqrt{p\left(p-a\right)}}\) <= \(p-\dfrac{b+c}{2}\) = \(p-\dfrac{2p-a}{2}\) = \(\dfrac{a}{2}\)
=> 2S <= \(a\sqrt{p\left(p-a\right)}\) = \(60\sqrt{80.\left(80-60\right)}\) = 2400
=> S <= 1200 (\(cm^2\))
Dấu "=" xảy ra
<=> \(p-b\) = \(p-c\)
<=> b = c
Thay b = c vào (1), ta được:
p = \(\dfrac{a+2b}{2}\) => 80 = \(\dfrac{60+2b}{2}\) => b = c = 50 (cm)
=> đpcm
Tam giác ABC có độ dài các cạnh là AB = 3 cm, AC = 5 cm, BC = 7 cm, tam giác A' B' C' đồng dạng với tam giác ABC và có chu vi bằng 55 cm. Hãy tính độ dài các cạnh của tam giác A' B' C’ (làm tròn đến chữ số thập phân thứ hai)
Chu vi tam giác ABC là 3 + 5 +7 = 15
Ta có :
P ABC / P A'B'C' = AB / A'B'
<=> 15 / 55 = 3 / A'B'
=> A'B' = ( 55 x 3 )/ 15 = 11 cm
P ABC / P A'B'C' = AC / A'C'
<=> 15 / 55 = 5 / A'C'
=> A'C' = ( 55 x 5 ) / 15 = 55/3 cm
P ABC / P A'B'C' = BC / B'C'
<=> 15 / 55 = 7 / B'C'
=> B'C' = ( 55 x 7 ) / 15 = 77/3 cm
\(\Rightarrow\Delta ABC\)đồng dạng \(\Delta A'B'C'\left(gt\right)\)
Áp dụng tính chất DTSBN , ta có :
\(\frac{AB}{A'B'}=\frac{AC}{A'C'}=\frac{BC}{B'C'}=\frac{AB+AC+BC}{A'B'+A'C'+B'C'}=\frac{C_{ABC}}{C_{A'B'C'}}\)
Hay \(\frac{3}{A'B'}=\frac{7}{B'C'}=\frac{5}{A'C'}=\frac{C_{ABC}}{55}=\frac{3+5+7}{55}=\frac{15}{55}=\frac{3}{11}\)
Với CABC và CA'B'C' lần lượt là chu vi của tam giác ABC , A'B'C'
\(+)\frac{3}{A'B'}=\frac{3}{11}\Rightarrow A'B'=\frac{3.11}{3}=11cm\)
\(+)\frac{7}{A'C'}=\frac{3}{11}\Rightarrow B'C'=\frac{7.11}{3}\approx25,67cm\)
\(+)\frac{5}{A'C'}=\frac{3}{11}\Rightarrow A'C'=\frac{5.11}{3}\approx18,33cm\)
Cho a,b,c là độ dài 3 cạnh của 1 tam giác có chu vi bằng 2
CM:\(a^2+b^2+c^2+abc< 2\)
Đề đúng : \(a^2+b^2+c^2+2abc< 2\)
Ta có : \(a+b+c=2\)
Áp dụng BĐT tam giác, ta có \(a+b>c\Leftrightarrow2>2c\Leftrightarrow c< 1\)
Tương tự : \(b< 1,a< 1\)
Suy ra \(\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)
\(\Leftrightarrow\left(1-a-b+ab\right)\left(1-c\right)>0\)
\(\Leftrightarrow1-a-b+ab-c+ac+bc-abc>0\)
\(\Leftrightarrow a+b+c-\left(ab+bc+ac\right)+abc< 1\)
\(\Leftrightarrow2\left(a+b+c\right)-2\left(ab+bc+ac\right)+2abc< 2\)
\(\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ac\right)+2abc< 2\)
\(\Leftrightarrow a^2+b^2+c^2+2abc< 2\) (đpcm)
Công thức Heron dùng để tính diện tích tam giác S=\(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\), trong đó a, b, c là độ dài ba cạnh \(P=\dfrac{a+b+c}{2}\) là nữa chu vi tam giác. Bạn Như vẽ \(\Delta ABC\) có độ dài 3 cạnh AB=18cm; AC=9cm;BC=\(9\sqrt{7}\)cm. Hãy giúp bạn Như tính diện tích tam giác đó.