Tìm các số x, y nguyên sao cho : \(x^2+2xy-7y-12=0\)
Bài 1: Tìm các số tự nhiên x; y sao cho 2xy - 5x + 7y - 4 = 0.
Bài 2: Tìm các số tự nhiên x; y sao cho 2xy + x = 5y.
Tìm x, y thuộc Z sao cho \(x^2+2xy-7y-12=0.\)
Tìm các số nguyên x,y biết
2xy-5x+7y=12
\(2xy-5x+7y=12\)
\(\Leftrightarrow y\left(2x+7\right)-5x=12\)
\(\Leftrightarrow y\left(2x+7\right)=12+5x\)\(\Leftrightarrow y=\frac{12+5x}{2x+7}\left(1\right)\)
Để y nguyên thì \(\frac{12+5x}{2x+7}\in Z\Rightarrow12+5x⋮2x+7\)
Ta thấy: \(2\left(12+5x\right)⋮2x+7\Rightarrow24+10x⋮2x+7\)
Lại có: \(5\left(2x+7\right)⋮2x+7\Rightarrow10x+35⋮2x+7\)
Do đó: \(10x+35-\left(24+10x\right)⋮2x+7\)\(\Rightarrow11⋮2x+7\)
=> \(2x+7\inƯ\left(11\right)\). Mà \(x\in Z\Rightarrow2x+7\in Z\Rightarrow2x+7\in\left\{1;11;-1;-11\right\}\)
\(\Rightarrow2x\in\left\{-6;4;-8;-18\right\}\)\(\Rightarrow x\in\left\{-3;2;-4;-9\right\}\)
Thay vào (1); ta được: \(y\in\left\{-2;2;-8;3\right\}\)
Vậy các cặp nghiệm nguyên của phương trình là:
\(\left(x;y\right)\in\left\{\left(-3;-2\right);\left(2;2\right);\left(-4;-8\right);\left(-9;3\right)\right\}.\)
Tìm x,y\(\in\)Z sao cho x2 + 2xy - 7y -12 = 0
Tìm các số nguyên dương x,y thỏa mãn 2xy - 5x + 7y - 4 = 0 ai nhanh mình tich
tìm các số nguyên x,y sao cho x^2 - 2xy +2y^2 - 4x + 7<0
Tìm các số nguyên x,y sao cho x-2xy+y=0
Tìm tất cả các cặp số nguyên x,y sao cho : x-2xy + y = 0
\(\Rightarrow2x-4xy+2y=0\\ \Rightarrow2x\left(1-2y\right)+2y-1=-1\\ \Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\\ \Rightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=\left(-1\right)\left(-1\right)\)
Với \(\left\{{}\begin{matrix}2x-1=1\\2y-1=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\rightarrow\left(1;1\right)\)
Với \(\left\{{}\begin{matrix}2x-1=-1\\2y-1=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\rightarrow\left(0;0\right)\)
Vậy các cặp \(\left(x;y\right)\) cần tìm là \(\left(1;1\right);\left(0;0\right)\)
Tìm các số nguyên dương x,y thoả mãn: 2xy-5x+7y=2