Cho ba số a, b, c sao cho abc = 1 . Hãy tính giá trị của :
A = \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}.\)
Cho ba số a, b, c sao cho abc = 1
Tính giá trị của biểu thức : \(P=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
Cho abc = 1 . Tính giá trị của biểu thức M = \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{a.b}{a.\left(bc+b+1\right)}+\frac{c}{ac+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+1}\)
Vì abc=1
\(=>M=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{c}{ac+c+abc}=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{c}{c\left(a+ab+1\right)}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}=\frac{ab+a+1}{ab+a+1}=1\)
Vậy M=1
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+abc}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{1}{a+1+ab}=\frac{ab+a+1}{ab+a+1}=1\)
\(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(M=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{c}{ac+c+abc}\); abc = 1 => a;b;c khác 0.
\(\Rightarrow M=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{1}{a+1+ab}=\frac{b+1}{bc+b+a}+\frac{abc}{a+abc+ab}\)
\(\Rightarrow M=\frac{b+1}{bc+b+a}+\frac{bc}{1+bc+b}=\frac{bc+b+1}{bc+b+1}=1\)
Cho abc=8 và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)(a,b,c>0). Tính giá trị của: \(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\)
\(\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)abc=\frac{3}{4}8\Rightarrow\frac{abc}{a^2}+\frac{abc}{b^2}+\frac{abc}{c^2}=\frac{3.8}{4}\Leftrightarrow\)\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=6\)
Cho 3 số a,b,c thỏa mãn a.b.c=18 =bc+b+1.Tính giá trị \(A=\frac{18}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ac+a+18}\)
Cho a, b, c là ba số khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)(các giả thiết đều có nghĩa)
Tính giá trị của biểu thức:
\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}\Leftrightarrow\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ab}\)
Tham khảo: Câu hỏi của Đậu Đình Kiên
Cho ba số a,b,c thỏa mãn abc=105, bc+b+1 và a khác 0. Tính giá trị của biểu thức:
S=\(\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)
cho ba số thực dương a b c thỏa mãn ab+bc+ac\(\le\)1. tìm giá trị nhỏ nhất của biểu thức P biết:
P=\(\frac{1}{\sqrt{a^2+b^2-abc}}+\frac{1}{\sqrt{a^2+c^2-abc}}+\frac{1}{\sqrt{c^2+b^2-abc}}\)
Cho ba số thực dương a, b, c thỏa mãn abc = 1. Tìm giá trị lớn nhất của:
\(A=\frac{1}{a^2+ab-a+5}+\frac{1}{b^2+bc-b+5}+\frac{1}{c^2+cb-c+5}\)
Ta có a2 + 1 \(\ge\)2a
Khi đó \(\frac{1}{a^2+ab-a+5}=\frac{1}{a^2+1+ab-a+4}\le\frac{1}{2a+ab-a+4}=\frac{1}{ab+a+4}\)
Tương tự ta được \(\frac{1}{b^2+bc-b+5}\le\frac{1}{bc+b+4};\frac{1}{c^2+ac-c+5}\le\frac{1}{ac+c+4}\)
Cộng vế với vế => A \(\le\frac{1}{ab+a+4}+\frac{1}{bc+b+4}+\frac{1}{ca+c+4}\)
=> 4A \(\le\frac{4}{ab+a+1+3}+\frac{4}{bc+b+1+3}+\frac{4}{ca+c+1+3}\)
\(\le\frac{1}{ab+a+1}+\frac{1}{3}+\frac{1}{bc+b+1}+\frac{1}{3}+\frac{1}{ac+a+1}+\frac{1}{3}\)
\(=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+a+1}+1\)
\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2bc+abc+ab}+1\)
\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+1=\frac{ab+a+1}{ab+a+1}+1=1+1=2\)
=> \(A\le\frac{1}{2}\)(Dấu "=" xảy ra <=> a = b = c = 1)
cho mik hỏi tí là làm sao ra được \(\frac{4}{ab+a+1+3}\le\frac{1}{ab+a+1}+\frac{1}{3}\) vậy ạ?
Dự đoán điểm rơi a = b = c = 1
Ta có : \(\frac{1}{ab+a+1}+\frac{1}{3}\ge\frac{\left(1+1\right)^2}{ab+a+1+3}\)(BĐT Schwarz)
\(=\frac{4}{a+b+c+4}\) (đpcm)
1,cho a,b,c là các số dương thỏa mãn abc=1
Tính giá trị của biểu thức \(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
M=1 khi và chỉ khi abc=1
Áp dụng giả thiết từ đề bài :
\(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(\Leftrightarrow M=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)
\(\Leftrightarrow M=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}\)
\(\Leftrightarrow M=\frac{1+b+bc}{b+1+bc}=1\)
Vậy M = 1
Ta có : \(M=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)
\(=\frac{1}{ab+a+1}+\frac{1}{\frac{1}{a}+b+1}+\frac{1}{c+ca+a.b.c}\)
\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{1}{c.\left(ab+a+1\right)}\)
\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}\)
\(=\frac{a+ab+1}{a+ab+1}=1\)
Vậy M = 1