Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tran van binh
Xem chi tiết
Lê Thị Minh Thư
Xem chi tiết
Thánh Ca
27 tháng 8 2017 lúc 16:07

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

Thánh Ca
27 tháng 8 2017 lúc 16:07

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

Lê Thị Minh Thư
27 tháng 8 2017 lúc 16:10

??? bạn nói j v?

Tony
Xem chi tiết
Lê Hà Phương
30 tháng 7 2016 lúc 17:04

đề có đúng k vậy bạn
 

Trà My
30 tháng 7 2016 lúc 17:08

\(\frac{x^2+y^2-z^2-2zt+2xy-t^2}{x^2-y^2+z^2-2ty+2xz-t^2}=\frac{\left(x^2+2xy+y^2\right)-\left(z^2+2zt+t^2\right)}{\left(x^2+2xz+z^2\right)-\left(y^2+2ty+t^2\right)}=\)

\(\frac{\left(x+y\right)^2-\left(z+t\right)^2}{\left(x+z\right)^2-\left(y+t\right)^2}=\frac{\left(x+y-z-t\right)\left(x+y+z+t\right)}{\left(x+z-y-t\right)\left(x+z+y+t\right)}=\frac{x+y-z-t}{x+z-y-t}\)

ủa? là mình làm sai hay bạn ghi đề sai vậy?

Trương Sỹ Bảo Lâm
11 tháng 8 2022 lúc 17:54

(x^2+2xy+y^2)-(z^2+2zt+t^2) tương tự vé dưới 

Đưa về a^2-b^2=(a-b)(a+b)

Rút gọn là xong

Đinh Tuấn Duy
Xem chi tiết
kudo shinichi
9 tháng 12 2018 lúc 7:11

\(\frac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)

\(=\frac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}\)

\(=\frac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}\)

\(=\frac{x-y+z}{x-y-z}\)

Trần khánh chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2021 lúc 13:00

\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)

\(=\dfrac{\left(-x+y-z\right)^2}{\left(x-y\right)^2-z^2}\)

\(=\dfrac{\left[-\left(x-y+z\right)\right]^2}{\left(x-y-z\right)\left(x-y+z\right)}\)

\(=\dfrac{x-y+z}{x-y-z}\)

Roronoa Zoro
Xem chi tiết
 ๛๖ۣۜMĭη²ƙ⁸࿐
Xem chi tiết
Kudo Shinichi
22 tháng 9 2019 lúc 21:03

\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)

       \(=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)

         \(=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)

           \(=\frac{\left(x+y+z\right)\left(x+y+z\right)}{\left(x+y+z\right)\left(x-y+z\right)}\)

               \(=\frac{x+y-z}{x-y+z}\)

Ta thay : \(x=0;y=2009;z=2010\) ta được :

\(A=\frac{0+2009-2010}{0-2009+2010}=-\frac{1}{1}=-1\)

Chúc bạn học tốt !!!

T.Ps
22 tháng 9 2019 lúc 21:05

\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)

\(=\frac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x+y+z\right)\left(x-y+z\right)}=\frac{x+y-z}{x-y+z}\)

Thay \(\hept{\begin{cases}x=0\\y=2009\\z=2010\end{cases}}\) vào biểu thức :

\(\Rightarrow A=\frac{0+2009-2010}{0-2009+2010}=-1\)

hoangnguyen126
Xem chi tiết
Uyên Nguyễn Phương
Xem chi tiết
Le Van Hung
1 tháng 12 2017 lúc 21:01

c) hang dang thuc ( x -y+z)^2

o duoi phan h hang dang thuc luon

a) phan h nhan tu ra sao cho co tử la (x-1)(3x^2 -4x +1)

mau la (x-1)(2x^2 -x-3)

 b ) k nhin dc de

Yen Nhi
22 tháng 10 2021 lúc 19:36

\(\frac{\left(x-y\right)^3+3xy.\left(x+y\right)+y^3}{x-6y}\)

\(=\frac{x^3-3x^2y+3xy^2-y^3+3x^2y+3xy^2+y^3}{x-6y}\)

\(=\frac{x^3+\left(-3x^2y+3x^2y\right)+\left(3xy^2+3xy^2\right)+\left(-y^3+y^3\right)}{x-6y}\)

\(=\frac{x^3+6xy^2}{x-6y}\)

Khách vãng lai đã xóa
Yen Nhi
22 tháng 10 2021 lúc 19:49

\(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)

\(=\frac{3x^3-3x^2-4x^2+4x+x-1}{2x^3-2x^2+x^2-x-3x+3}\)

\(=\frac{3x^2.\left(x-1\right)-4x.\left(x-1\right)+\left(x-1\right)}{2x^2.\left(x-1\right)+x.\left(x-1\right)-3.\left(x-1\right)}\)

\(=\frac{\left(x-1\right).\left(3x^2-4x+1\right)}{\left(x-1\right).\left(2x^2+x-3\right)}\)

\(=\frac{3x^2-3x-x+1}{2x^2-2x+3x-3}\)

\(=\frac{3x.\left(x-1\right)-\left(x-1\right)}{2x.\left(x-1\right)+3.\left(x-1\right)}\)

\(=\frac{\left(x-1\right).\left(3x-1\right)}{\left(x-1\right).\left(2x+3\right)}\)

\(=\frac{3x-1}{2x+3}\)

Khách vãng lai đã xóa