tìm giá trị nhỏ nhất của biểu thức A=|x-2017|-1
a) Tìm giá trị nhỏ nhất của biểu thức : "B=I x+11 I + I 1-y I + 2017 "và cho biết giá trị của "x , y" để "B" đạt giá trị nhỏ nhất.
Để B nhỏ nhất nên | x + 11| = 0 và | 1 -y | = 0
Với | x + 11 | = 0 thì x + 11 = 0 nên x = -11
Với | y - 1 | = 0 thì y - 1 = 0 nên y =1
Vậy x = -11 , y =1
hok tốt
1/ Tìm giá trị nhỏ nhất của biểu thức B= 2I3x-6I - 4
2/ Tìm x thuộc Z để biểu thức D= I x-2 I + I x-8 I đạt Gía trị nhỏ nhất
3/ Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
A= I x-2017 I + I x-2 I
4/ với giá trị nào của x,y thì biểu thức C = I x-100 I + I y+20 I - 1 có giá trị nhỏ nhất . Tìm GTNN
5/ Với giá trị nào của x thì biểu thức A= 100 - I x+5 I có giá trị lớn nhất. Tìm GTLN đó
1/ Tìm giá trị nhỏ nhất của biểu thức B= 2I3x-6I - 4
2/ Tìm x thuộc Z để biểu thức D= I x-2 I + I x-8 I đạt Gía trị nhỏ nhất
3/ Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
A= I x-2017 I + I x-2 I
4/ với giá trị nào của x,y thì biểu thức C = I x-100 I + I y+20 I - 1 có giá trị nhỏ nhất . Tìm GTNN
5/ Với giá trị nào của x thì biểu thức A= 100 - I x+5 I có giá trị lớn nhất. Tính GTLN đó
giúp với ạ ._.
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
Tìm giá trị nhỏ nhất của biểu thức:
A= |x-1| + |x-2017|
Ta thấy:\(\left|x-1\right|+\left|x-2017\right|\ge\left|x-1+2017-x\right|\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2017\right|\ge2016\)
\(\Leftrightarrow A\ge2016\)
Dấu "="xảy ra khi x=1 hoặc 2017
Vậy Amin=2016 <=>x=1 hoặc 2017
Tìm giá trị nhỏ nhất của biểu thức A= |x-2017| + x-2018
Ta có: \(A=|x-2017|+x-2018\)
\(\Rightarrow A=|2017-x|+x-2018\)
\(\Rightarrow A\ge2017-x+x-2018=-1\)
Dấu " = " xảy ra \(\Leftrightarrow x\le2017\)
Vì \(|x-2017|\)\(\ge\) \(0\)\(\forall x\)
=> A\(\ge x-2018\forall x\)
Dấu " = " xảy ra khi \(|x-2017|\)=0
=> x= 2017
thiếu rồi bổ sung thêm: vậy A nhỏ nhất khi x=2017
Khi đó A=-1
Tìm giá trị nhỏ nhất của biểu thức
a, P=|x-1|+|x-2|+...+|x-2017|
Ta có :
\(\left|x-1\right|+\left|x-2017\right|\ge x-1+2017-x=2016\)
\(\left|x-2\right|+\left|x-2016\right|\ge x-2+2016-x=2014\)
....
\(\left|x-1008\right|+\left|x-1010\right|\ge x-1008+1010-x=2\)
\(\left|x-1009\right|\ge0\)
\(\Rightarrow P\ge2016+2014+....+2+0\)
\(\Rightarrow P\ge1017072\)
Dấu " = " xảy ra khi \(\begin{cases}\begin{cases}x-1>0\\2017-x>0\end{cases}\\.....\\x-1009=0\end{cases}\)
=> x = 1009
Vậy ......
Tìm giá trị nhỏ nhất của biểu thức : |x+1|+|x+3|+|x+4|+.....+|x+2017|
tìm giá trị nhỏ nhất của biểu thức A=|x-2016|+2017/|x-2016|+2018
Tìm giá trị nhỏ nhất của biểu thức A=|x-7|+|x-2016|+|x-2017|