tìm tích của 98 số đầu tiên: 1/1/3;1/1/8;1/1/15;1/1/24;1/1/35.........
Tìm tích của 98 số hạng đầu tiên của dãy : 1/1/3;1/1/8;.....
Tìm tích của 98 số hạng đầu tiên của dãy
\(1\dfrac{1}{3};1\dfrac{1}{8};1\dfrac{1}{15};1\dfrac{1}{24};1\dfrac{1}{35}\)
\(1\dfrac{1}{3}=1\dfrac{1}{\left(1+2\right)1};1\dfrac{1}{8}=1\dfrac{1}{\left(2+2\right)2}\)
số thứ 98 = \(1\dfrac{1}{\left(98+2\right)98}=1\dfrac{1}{9800}\)
Tìm tích của 98 số đầu tiên của dãy: 1/1/3;1/1/8;1/1/15;1/1/24;1/1/35
tìm tích của 98 số hạng đầu tiên của dãy
\(1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};1\frac{1}{24};...\)
Tìm tích của 98 số hạng đầu tiên của dãy :
\(1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};1\frac{1}{24};1\frac{1}{35}...\)
tìm tích của 98 hơn số đầu tiên của dãy các hỗn số sau
1 1/ 3; 1 1/ 8 ;1 1/ 15; 1 1/ 24; 1 1/ 35
CHÚ Ý :CÁC SỐ TRÊN LÀ HỖN SỐ
Viết lại dãy số trên dười dạng :\(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};...\)
Khi đó, số hạng số 98 là \(\frac{99^2}{98.100}\)
Ta có : A = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}....\frac{99^2}{98.100}\)
A = \(\frac{\left(2.3.4....99\right)^2}{\left(1.2.3....98\right).\left(3.4.5....100\right)}\)
A =\(\frac{99.2}{1.100}\)
A = \(\frac{99}{50}\)
Vậy tích của 98 số dầu tiên của dãy số trên là \(\frac{99}{50}\)
Ta có:
\(1\frac{1}{3}=\frac{4}{3}=\frac{2^2}{1.3}\)
\(1\frac{1}{8}=\frac{9}{8}=\frac{3^2}{2.4}\)
\(1\frac{1}{15}=\frac{16}{15}=\frac{4^2}{3.5}\)
=> Số thứ 98 của dãy là \(\frac{99^2}{98.100}\)
=> Tích của 98 số đầu tiên trong dãy đã cho là:
\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{99^2}{98.100}\)
\(=\frac{2.3.4.....99}{1.2.3.....98}.\frac{2.3.4.....99}{3.4.5.....100}\)
\(=\frac{99}{1}.\frac{2}{100}=\frac{99}{50}\)
cho dãy số:
1 và 1/3, 1 và 1/8, 1 và 1/15, 1 và 1/24, 1 và 1/35,........
a) Tìm số hạng tổng quát của dãy.
b) Tính tích 98 số hạng đầu tiên của dãy.
giúp mình với cảm ơn các bạn nhiều!!!!
a) Ta viết lại dãy đã cho thành \(1\dfrac{1}{3},1\dfrac{1}{8},1\dfrac{1}{15},...\)
Ta có thể thấy mẫu số của phần phân số trong các hỗn số của dãy là dãy các tích của 2 số cách nhau 2 đơn vị kể từ \(1.3\). Chẳng hạn \(3=1.3\), \(8=2.4\), \(15=3.5,...\) Do đó ta rút ra công thức số hạng tổng quát của dãy là \(u_n=1\dfrac{1}{n\left(n+2\right)}\)\(1+\dfrac{1}{n\left(n+2\right)}=\dfrac{n^2+2n+1}{n\left(n+2\right)}=\dfrac{\left(n+1\right)^2}{n\left(n+2\right)}\)
b) Ta cần tính \(u_1.u_2...u_{98}\). Ta thấy rằng
\(u_1.u_2...u_{98}\) \(=\dfrac{\left(1+1\right)^2}{1.3}.\dfrac{\left(2+1\right)^2}{2.4}.\dfrac{\left(3+1\right)^2}{3.5}...\dfrac{\left(98+1\right)^2}{97.99}\) \(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{6^2}{4.6}...\dfrac{98^2}{97.99}.\dfrac{99^2}{98.100}\) \(=\dfrac{2.99}{100}=\dfrac{99}{50}\)
a) \(1\&\dfrac{1}{1.3};1\&\dfrac{1}{2.4};1\&\dfrac{1}{3.5};1\&\dfrac{1}{4.6};...1\&\dfrac{1}{n.\left(n+2\right)}\left(n\in\right)N^{\cdot}\)
b) \(\dfrac{1}{1.3}.\dfrac{1}{2.4}.\dfrac{1}{3.5}.\dfrac{1}{4.6}....\dfrac{1}{98.100}\)
\(=\dfrac{1}{1.2.3...97}.\dfrac{1}{3.4.5...97}.\dfrac{1}{98.100}\)
\(=\dfrac{1}{97!}.\dfrac{1.2}{1.2.3.4.5...97}.\dfrac{1}{98.100}\)
\(=\dfrac{1}{50.98}.\dfrac{1}{\left(97!\right)^2}=\dfrac{1}{4900.\left(97!\right)^2}\)
Cho dãy số sau : \(1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};1\frac{1}{24};1\frac{1}{35};...\)
Tìm tích của 98 số hạng đầu tiên của dãy trên.
Viết lại dãy phân số: \(\frac{4}{3};\frac{9}{8};\frac{16}{15};\frac{25}{24};\frac{36}{35};...\) hay \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};\frac{5^2}{4.6};\frac{6^2}{5.7};...\)
=> Số hạng thứ 98 là : \(\frac{99^2}{98.100}\)
=> Tích cần tính = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}.\frac{6^2}{5.7}....\frac{99^2}{98.100}=\frac{\left(2.3.4...99\right)^2}{\left(1.2.3...98\right).\left(3.4.5....100\right)}=\frac{99.2}{100}=\frac{99}{50}\)
Các số hạng đc viết dưới dạng: \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};.........\)
=> Số hạng thứ 98 có dạng \(\frac{99^2}{98.100}\)
Vậy ta cần tính tích:
A = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}........\frac{99^2}{98.100}\)
= \(\frac{\left(2.3.4..........99\right)\left(2,3,4,,,,,,,,,,,,99\right)}{\left(1.2.3.......98\right)\left(3.4.5.........100\right)}\)
=\(\frac{99.2}{1.100}=\frac{99}{50}\)
Tích của 98 số hạng đầu tiên của dãy trên là \(\frac{99}{50}\).
a)Tìm các số nguyên dương a,b và c sao cho:\(\frac{52}{9}=5+\frac{1}{a+\frac{1}{b+\frac{1}{c}}}\)
b)Tìm tích của 98 số đầu tiên trong dãy số sau:\(1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};1\frac{1}{24};1\frac{1}{35};...\)