Chứng minh rằng
UCLN(a,b) x BCNN(a,b) = a nhân b
chứng minh UCLN(a,b) nhân với BCNN(a,b) bằng a x b
Đặt d = ƯCLN(a;b) => a = da'; b = d.b' (a';b' nguyên tố cùng nhau)
Ta cần chứng minh: BCNN(a;b) . d = a.b Hay BCNN(a;b) = (a.b)/d . đặt m = (a.b)/d
+) Ta có: m = (a.b)/d = a. \(\frac{b}{d}\) = a.b'
m = b. \(\frac{a}{d}\) = b.a'
Mà a'; b' nguyên tố cùng nhau nên m là bội chung nhỏ nhất của a; b => BCNN(a;b) = (a.b)/d
=> BCNN(a;b) = (a.b)/ ƯCLN(a;b) => BCNN(a;b).ƯCLN(a;b) = a.b
Chứng minh rằng
UCLN(a,b) x BCNN(a,b) = a nhân b
vì UCLN(a,b) nếu phân tích ra thì là tích của các thừa số chung mỗi số lấy với số mũ nhỏ nhất
vì BCLN(a,b) ........................................................................và riêng.....................lớn nhất
mà a x b là tất cả mọi số được phân tích nhân với nhau
và UCLN(a,b)xBCNN(a,b) cũng như vậy
vậy UCLN(a,b)xBCNN(a,b)=a x b
Chứng minh rằng:
Tích của a và b bằng ƯCLN (a, b) nhân với BCNN (a, b)
(Với a, b thuộc N*)
Chứng minh rằng : ƯCLN (a,b) x BCNN (a,b) = a x b
Chứng minh rằng: BCNN(a,b) x ƯCLN(a,b) = a.b
1) đặt d = UCLN(a,b) => tồn tại m, n sao cho: a = dm ; b = dn
thấy UCLN(m, n) = 1, vì nếu m và n có 1 ước chung p > 1
m = p.m' ; n = p.n' thấy a = dpm' ; b = dpn' => dp là UC(a,b) mà dp > d trái giả thiết d là UCLN
vì UCLN(m,n) = 1 nên BCNN(a,b) = dmn
thấy: BCNN(a,b) * UCLN(a,b) = dmn.d = dm.dn = ab (đpcm)
Chứng minh rằng: BCNN(a,b) x ƯCLN(a,b) = a.b
Đặt d = ƯCLN(a;b) => a = da'; b = d.b' (a';b' nguyên tố cùng nhau)
Ta cần chứng minh: BCNN(a;b) . d = a.b Hay BCNN(a;b) = (a.b)/d . đặt m = (a.b)/d
+) Ta có: m = (a.b)/d = a.\(\frac{b}{d}\) = a.b'
m = b. \(\frac{a}{d}\) = b.a'
Mà a'; b' nguyên tố cùng nhau nên m là bội chung nhỏ nhất của a; b => BCNN(a;b) = (a.b)/d
=> BCNN(a;b) = (a.b)/ ƯCLN(a;b) => BCNN(a;b).ƯCLN(a;b) = a.b
Vậy...
BCNN(a,b)*UCLN(a,b)=a*b
chứng minh BCNN(a,b) * UCLN(a,b)=a*b
Chứng minh rằng
UCLN(a,b) x BCNN(a,b) = a nhân b
Đặt d = UCLN(a,b) => a = d.a'
b = d.b'
(a' ; b' nguyên tố cùng nhau)
Ta cần chứng minh : BCNN(a,b). d = a.b hay BCNN(a,b)=\(\dfrac{a.b}{d}\)
Đặt m= \(\dfrac{a.b}{d}\)
m= b.\(\dfrac{a}{d}\)=b.a'
mà a' ; b' nguyên tố cùng nhau nên m thuộc BCNN(a,b) =>BCNN(a,b)=\(\dfrac{a.b}{d}\)
BCNN(a,b) = \(\dfrac{a.b}{UCLN\left(a;b\right)}\)
=> BCNN(a,b). UCLN(a,b) = a.b
Chứng minh rằng
UCLN(a,b) x BCNN(a,b) = a nhân b