Giải hệ phương trình \(\hept{\begin{cases}x^2+y^2+3xy=0\\x^3-y^2=y^3-x^2\end{cases}}\)
Giải hệ phương trình :
1, \(\hept{\begin{cases}x+y+z=3xy\\x^2+y^2+z^2=3xz\\x^3+y^3+z^3=3yz\end{cases}}\)
2,\(\hept{\begin{cases}x^3-y^3=9\\x^2+2y^2=x-4y\end{cases}}\)
GIẢI HỆ PHƯƠNG TRÌNH\(\hept{\begin{cases}x^2+3xy-3\left(x-y\right)=0\\x^4+9y\left(x^2+y\right)-5x^2=0\end{cases}}\)
Hệ pt \(\Leftrightarrow\hept{\begin{cases}x^2+3y=3x-3xy\left(1\right)\\\left(x^2+3y\right)^2+3x^2y-5x^2=0\left(2\right)\end{cases}}\)
Thay (1) vào (2) ta được: \(x^2\left(9y^2-15y+4\right)=0\Leftrightarrow\hept{\begin{cases}x=0\Rightarrow y=0\\y=\frac{1}{3}\Rightarrow x=1\\y=\frac{4}{3}\Rightarrow x^2+x+4=0\left(VN\right)\end{cases}}\)
CÁM ƠN BẠN NHIỀU, NHƯNG MÌNH LÀM ĐƯỢC BÀI NÀY RỒI, CÁM ƠN VÀ XIN LỖI BẠN !
Giải hệ phương trình: \(\hept{\begin{cases}2x^2+y^2-3xy-4x+3y+2=0\\\sqrt{x^2-y+3}+\sqrt{y-x+1}=2\end{cases}}\)
Ta có : \(\hept{\begin{cases}2x^2+y^2-3xy-4x+3y+2=0\\\sqrt{x^2-y+3}+\sqrt{y-x+1}=2\end{cases}}\)
Xét phương trình đầu : \(2x^2+y^2-3xy-4x+3y+2=0\)
\(\Leftrightarrow\left(2x^2-xy-2x\right)+\left(-2xy+y^2+2y\right)+\left(-2x+y+2\right)=0\)
\(\Leftrightarrow x\left(2x-y-2\right)-y\left(2x-y-2\right)-\left(2x-y-2\right)=0\)
\(\Leftrightarrow\left(2x-y-2\right)\left(x-y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-y-2=0\\x-y-1=0\end{cases}}\)
Từ đó thay y bởi x vào pt còn lại để tìm nghiệm.
\(\hept{\begin{cases}2x^3+\left(6-y\right)x^2-3xy-18=0\\x^2+x+y=-7\end{cases}}\)
giải hệ phương trình trên
Giải hệ phương trình :
\(\hept{\begin{cases}x^2-3xy+x=2y-2y^2\\x^3=y^3+6y^2+y\end{cases}}\)
x2-3xy+x=2y-2y2
<=>x2-3xy+2y2=2y-x
<=>(x-2y)(x-y)=2y-x
<=>(x-2y)(x-y+1)=0
đến đây thay vào pt 2 là ra
Bài 1: Giải hệ phương trình:
\(\hept{\begin{cases}x^2+32y^2=9y^4=\frac{272}{9}\\x^2+y^2+xy+4=3x+4y\end{cases}}\)
Bài 2: Giải hệ phương trình:
\(\hept{\begin{cases}x^2-xy-3y^2+3x-y-1=0\\xy+y^2-x+3y=0\end{cases}}\)
Bài 3: Giải hệ phương trình:
\(\hept{\begin{cases}x^2+3xy-9y^2+23y-17=0\\x^2-2xy+3y^2-6y-3=0\end{cases}}\)
Ai nhanh và đúng mình sẽ cho đúng và thêm bạn bè nhé. Thanks! Làm ơn giúp mình !!! PLEASE !!!
Giải hệ phương trình
\(\hept{\begin{cases}x^2-4xy+y^2=3\\y^2-3xy=2\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}x^2-4xy+y^2=3\\y^2-3xy=2\end{cases}}\)
\(\hept{\begin{cases}x^2-4xy+y^2=3\left(1\right)\\y^2-3xy=2\left(2\right)\end{cases}}\)
-rút 2 biểu thức cùng bằng y2, đem 2 biểu thức đó trừ với nhau được: -x2+xy+1=0(b)
-Nhân (1) với 3, nhân (2) với 4. rút ra đc 2 biểu thức cùng bằng -12xy, đem 2 biểu thức đó trừ với nhau được : 1-3x2+y2=0(a)
trừ vế theo vế, có: (b)-(a)=2x2+xy-y2=0 =>(x2-y2)+(x2+xy)=0=> (x+y).(x-y)+x.(x+y)=0 => (x+y).(x-y+x)=0
=> (x+y).(2x-y)=0
tự làm tiếp
Bạn kia làm màu quá
Nhân chéo 2 pt lại được
\(2\left(x^2-4xy+y^2\right)=3\left(y^2-3xy\right)\)
\(\Leftrightarrow2x^2-8xy+2y^2=3y^2-9xy\)
\(\Leftrightarrow2x^2+xy-y^2=0\)
\(\Leftrightarrow\left(2x-y\right)\left(x+y\right)=0\)
Giải hệ phương trình: \(\hept{\begin{cases}x^3+3xy^2=-49\\x^2-8xy+y^2=8y-17x\end{cases}}\)
http://diendantoanhoc.net/topic/151610-leftbeginmatrix-x33xy2-49-x2-8xyy28y-17x2-endmatrixright/
<<<Click here>>>