Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Văn Thanh
Xem chi tiết
Trịnh Thành Công
11 tháng 11 2017 lúc 21:11

\(\frac{a^3+b^3-c^3+3abc}{\left(a-b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}=\frac{\left(a+b\right)^3-c^3-3ab\left(a+b\right)+3abc}{2a^2+2b^2+2c^2-2ab+2bc+2ac}\)

                                                                     \(=\frac{\left(a+b-c\right)\left[\left(a+b\right)^2+c\left(a+b\right)+c^2\right]-3ab\left(a+b-c\right)}{2a^2+2b^2+2c^2-2ab+2bc+2ac}\)

                                                                     \(=\frac{\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2-3ab\right)}{2\left(a^2+b^2+c^2-ab+bc+ac\right)}\)

                                                                       \(=\frac{a+b-c}{2}\)

Nguyễn Thế Sơn
Xem chi tiết
Cô Gái Mùa Đông
Xem chi tiết
Mai Ngoc
Xem chi tiết
Nguyễn Trần Tuyết Liên
19 tháng 12 2016 lúc 14:47

a) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)

\(=\frac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{ab^2-b^3-ac^2+bc^2}\)

\(=\frac{\left(a^2b-b^2a\right)+\left(b^2c-a^2c\right)+c^2\left(a-b\right)}{b^2\left(a-b\right)-c^2\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)+c\left(b^2-a^2\right)+c^2\left(a-b\right)}{\left(b^2-c^2\right)\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(b-c\right)\left(b+c\right)\left(a-b\right)}\)

\(=\frac{ab-c\left(a+b\right)+c^2}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{ab-ac+c^2-bc}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a\left(b-c\right)-c\left(b-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{\left(b-c\right)\left(a-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a-b}{b+c}\)

Nguyễn Trần Tuyết Liên
19 tháng 12 2016 lúc 14:54

Sửa lại: \(\frac{a-c}{b+c}\)

Phan Tuấn Dũng
Xem chi tiết
Ly
6 tháng 7 2017 lúc 0:12

a^3 +c^3 = (a+c). (a^2 -a.c+c^2)

 = (a+c)^3 -3 ac.(a+c)

 => a^3+c^3-3abc+b^3 =(a+c)^3-3ac (a+c)-3abc +b^3

=(a+c)^3+b^3 -3ac (b+(a+c))

=(a+c+b). ((a+c)^2-(a+c).b+b^2) -3ac (a+c+b)

 =(a+c+b)^3-3(a+c)b. (a+c+b)-3ac (a+c+b)

 =(a+c+b)((a+c+b)^2  -3ab-3bc-3ac) (1)

 (a-b)^2 + (b-c)^2 +(a-c)^2 

 = 2a^2 +2b^2+2c^2 -2ab-2bc-2ac

 =2 (a^2+b^2+c^2-ac-ab-bc)

 =2((a+b)^2-3ab +c^2 -ac-bc)

 =2 ((a+b+c)^2-2(ac+bc)-3ab-ac-bc)

 =2 (( a+c+b)^2 -3ab-3bc -3ac) (2)

Từ (1),(2) =>(a^3+b^3+c^3-3abc)/((a-b)^2

+(b-c)^2+(c-a)^2)

=(a+b+c)/2 

Long O Nghẹn
Xem chi tiết
kudo shinichi
6 tháng 12 2018 lúc 21:46

Sửa đề: \(P=\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(P=\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(P=\frac{\left(a+b\right)^3+c^3-3abc-3a^2b-3ab^2}{a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2}\)

\(P=\frac{\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b+c\right)}{2.\left(a^2+b^2+c^2-ab-bc-ca\right)}\)

\(P=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc+3ab\right)}{2.\left(a^2+b^2+c^2-ab-bc-ca\right)}\)

\(P=\frac{5\left(a^2+b^2+c^2-ab-ac-bc\right)}{2.\left(a^2+b^2+c^2-ab-bc-ca\right)}\)( a+b+c=0)

\(P=\frac{5}{2}\left[\left(a^2+b^2+c^2-ab-bc-ca\right)\ne0\right]\)

Hiếu Minh
Xem chi tiết
Lấp La Lấp Lánh
15 tháng 11 2021 lúc 19:29

Bài 1:

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

\(\Leftrightarrow ab+bc+ac=0\Leftrightarrow bc=-ab-ac\)

\(\dfrac{a^2}{a^2+2bc}=\dfrac{a^2}{a^2+bc-ab-ac}=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}\)

CMTT: \(\left\{{}\begin{matrix}\dfrac{b^2}{b^2+2ca}=\dfrac{b^2}{\left(b-c\right)\left(b-a\right)}\\\dfrac{c^2}{c^2+2ab}=\dfrac{c^2}{\left(b-c\right)\left(a-c\right)}\end{matrix}\right.\)

\(M=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\dfrac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)

Bài 2:

\(a^3+b^3+c^3-3abc=\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3abc-3a^2b-3ab^2\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)(do \(a+b+c=0\))

\(\Rightarrow A=\dfrac{0}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}=0\)

Cáo Nô
Xem chi tiết
Phạm Văn Việt
Xem chi tiết