Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Nguyễn
Xem chi tiết
VyLinhLuân
5 tháng 10 2021 lúc 11:52

1/ Vì AN//DM

        AM//DN

=> AMDN là hình bình hành( vì là tứ giác có các cặp cạnh song song)

2/ Giả  sử có AMDN là hthoi

=>AN=DN =>tam giác ADN cân tại N

=>ˆNAD=ˆNDANAD^=NDA^ màˆNDA=ˆDAMNDA^=DAM^

=>ˆNAD=ˆMADNAD^=MAD^ =>AD là phân giác ˆBACBAC^

anhhungvutru
Xem chi tiết
Nguyễn Phương
Xem chi tiết
Lê Minh Thư
Xem chi tiết
❊ Linh ♁ Cute ღ
31 tháng 12 2018 lúc 20:15

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

 Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).

NHI NHi
Xem chi tiết
Hàn Vũ Nhi
Xem chi tiết
nguyễn quốc hoàn
Xem chi tiết
Nguyễn Thuỳ Linh
Xem chi tiết
Lê Tài Bảo Châu
2 tháng 3 2020 lúc 17:17

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

Khách vãng lai đã xóa
Lê Tài Bảo Châu
2 tháng 3 2020 lúc 17:18

Tối về mình làm nốt  nhé giờ mình có việc 

Khách vãng lai đã xóa
Trí Tiên亗
2 tháng 3 2020 lúc 19:07

Bài 4 :

A B C D

Để tứ giác ABCD là hình bình hành

\(\Leftrightarrow\hept{\begin{cases}\widehat{DAB}=\widehat{DCB}=120^o\\\widehat{ADC}=\widehat{ABC}\end{cases}}\)

Lại có : \(\widehat{DAB}+\widehat{DCB}+\widehat{ABC}+\widehat{ADC}=360^o\)

\(\Leftrightarrow\widehat{ABC}+\widehat{ADC}=120^o\)

\(\Leftrightarrow\widehat{ABC}=\widehat{ADC}=60^o\)

Khách vãng lai đã xóa
32 - Thành Trung 8A11
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 12 2021 lúc 22:29

a: Xét ΔHAB có 

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB

hay ABNM là hình thang