CMR tích của 20 số nguyên dương liên tiếp không là lũy thừa bậc 20 của một số nguyên dương
cm rằng tích 8 số nguyên dương liên tiếp không thể bằng lũy thừa bậc 4 của 1 số nguyên
Chứng minh rằng tích cảu 8 số nguyên dương liên tiếp thì không là lũy thừa bậc 4 của 1 số tự nhiên
Chứng minh rằng tích của 8 số nguyên dương liên tiếp thì không là lũy thừa bậc 4 của 1 sô tự nhien
Cho tập M gồm 2018 số nguyên dương, mỗi số chỉ có ước nguyên tố không vượt quá 23. Chứng minh rằng tồn tại 4 số phân biệt trong M có tích là lũy thừa bậc 4 của một số nguyên
Tìm sốn nguyên dương nhỏ nhất thỏa mãn các điều kiện sau: 1/2 số đó là số chính phương; 1/3 số đó là lũy thừa bậc ba của một số nguyên; 1/5 số đó là lũy thừa bậc năm của một số nguyên
Ai nhanh mk tick cho
Đặt A là số cần tìm. Ta có: A= 5m^5 = 3.n^3 = 2.p^2
Như vậy A có các ước nguyên tố 5,3,2. Mà A là số bé nhất thỏa mãn nên ta có A = 5^a.3^b.2^c
Xét nhân tử 5^a, vì A/3=n^3, A/2=p^2 nên n^3,p^2 chứa nhân tử 5^a=> a phải chia hết cho 2,3
Mặt khác A=5.m^5 nên a chia 5 dư 1 => a nhỏ nhất là 6
Tương tự ta có b chia hết cho 2,5, chia 3 dư 1 nên b nhỏ nhất là 10
c chia hết cho 5,3 chia 2 dư 1 nên c nhỏ nhất là 15
Vậy A nhỏ nhất là 5^6.3^10.2^15. Thử lại thỏa mãn.
Vậy là kết quả ra bn. Mik vẫn chưa hiểu
CMR tích của 4 số nguyên dương liên tiếp không là số chính phương
Gọi 4 số nguyên dương liên tiếp là n, n+1, n+2, n+3.
Đặt S=n(n+1)(n+2)(n+3)
=n(n+3)(n+1)(n+2)=(n^2+3n)(n^2+3n+2)=(n^2+3n)^2 + 2(n^2+3n) +1 -1
=(n^2 +3n +1)^2 - 1
Sử dụng tính chất kẹp giữa của số chính phương:
(n^2 + 3n)^2 < (n^2 + 3n + 1)^2 - 1 < (n^2 + 3n +1)
Trên đây là 2 số chính phương liên tiếp nên S không là số chính phương.
Tìm số nguyên dương nhỏ nhất thỏa mãn các mãn các điều kiện sau: 1/2 số đó là 1 số chính phương, 1/3 số đó là lũy thừa bậc 3 của 1 số nguyên, 1/5 số đó là lũy thừa bậc 5 của 1 số nguyên
CMR : tích của 8 số tự nhiên liên tiếp không thể là lũy thừa bậc 4 của 1 số tự nhiên
CMR tích của 4 số nguyên dương liên tiếp không là số chính phương
Gọi tích 4 số nguyên dương liên tiếp đó là A=(a-1)a(a+1)(a+2)
A = [(a-1)(a+2)][a(a+1)] = (a^2+2a-a-2)(a^2+a) = (a^2+a-2)(a^2+a)
Đặt a^2+a-1=x; thế thì A=(x-1)(x+1)=x^2-1 không phải là số chính phương
CMR : tổng các lũy thừa bậc ba của 3 số nguyên liên tiếp thì chia hết cho 9