Cho △ABC (AB<AC), M là trung điểm AC. Trên tia đối của tia MB, lấy D sao cho MD=MB.
a) Chứng minh : △ABM=△CDM△ABM=△CDM
b) Chứng minh : AB // CD
c) Vẽ AK và CH cùng vuông góc với BD (K,H ∈∈ BD). Chứng minh : BK = DH
Cho tam giác ABC có BC= 1cm; AC= 7cm và độ dài cạnh AB là một số nguyên (cm).Tính độ dài AB và cho biết tam giác ABC là tam giác gì?
A. AB= 7cm và tam giác ABC vuông tại A
B. AB= 7cm và tam giác ABC cân tại A
C. AB= 7cm và tam giác ABC vuông cân tại A
D. AB= 8cm và tam giác ABC vuông tại B
1 Khi chia STN a cho 54 ta được số dư là 38 , khi chia cho 18 ta được thương là 14 và còn dư . Tim số a
2 . thay các chữ số thích
ab + bc + ca = abc ( ab , bc , ca , abc co gạch trên đầu )
abc + ab + a = 874( abc , ab có gạch trên đầu )
abc + ab + a = 1037 ( abc , ab có gạch trên đầu )
1) a chia cho 54 dư 38 => a = 54k + 38 = 18.3k + 36 + 2 = 18.(3k +2) + 2
=> a chia cho 18 dư 2; a chia hco 18 được thương là 14
=> a = 18.14 + 2 = 254
b) => 100a + 10b + c + 10a + b + a = 874
=> 111a + 11b + c = 874
=> 111a < 874 => a < 8
Hơn nữa, 11b + c < 11.10 + 10 = 120 => 111a + 11b + c < 120 + 111a
=> 111a + 120 > 874 => 111a > 754 => a > 6 mà a < 8 nên a = 7
vậy 777 + 11b + c = 874 => 11b + c = 874 - 777 = 97
Tương tự, => b < 9 và b > 7 => b = 8 => 88 + c = 97 => c = 9
Vậy abc = 789
c) => 100a + 10b + c + 10a + b + a = 1037
=> 111a + 11b + c = 1037
Nhận xét: 111a < 1037 => a < 10
Hơn nữa, 11b + c < 11.10 + 10 = 120 => 1037 < 120 + 111a => 111a > 1037 - 120 = 917 => a > 8 mà a < 10
nên a = 9
=> 999 + 11b + c = 1037
=> 11b + c = 38 => 11b < 38 => b < 4 hơn nữa c lớn nhất bằng 9 nên 11b nhỏ nhất là 38 - 9 = 28 tức là 11b > 28 => b > 2
vậy b = 3
=> c = 5
Vậy abc = 935
bài 3;cho tam giác abc vuông tại a biết ab=2cm tính bc
bài 4;cho tam giác abc vuông tại a biết bc=2cm.tính ab,ac
bài 5.cho tam giác abc vuông tại a
a)tính ab biết bc=10cm,ac=8cm.b)tính ac biết bc=12 cm,ab=10cm
1. Cho tam giác ABC vuông tại A, biết AH = 16, BH = 9. Tính AB.
2. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính độ dài HB.
3. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12, BC = 15. Tính HC.
4. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 6, HC = 9. Tính độ dài AC.
5. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 16cm. Tính AH
6. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 8cm, HC = 12 cm. Tính AC.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Bài 1:
Cho △ABC , đường thẳng d cắt AB ,AC lần lượt tại B',C' sao cho \(\dfrac{AB'}{AB}\)=\(\dfrac{AC'}{AC}\).Chứng minh:
a) \(\dfrac{AB'}{B'B}\)=\(\dfrac{AC'}{C'C}\)
b) \(\dfrac{BB'}{AB}\)=\(\dfrac{CC'}{AC}\)
Bài 2: Cho △ABC , đường trung tuyến AD.Gị M là một điểm trên cạnh AC sao cho AM=\(\dfrac{1}{2}\)MC.Gọi O là giao điểm của BM và AD.Chứng minh rằng:
a)O là trung điểm của AD.
b) OM=\(\dfrac{1}{4}\)BM
Bài 2:
a: Gọi I là trung điểm của MC
Ta có: \(MI=IC=\dfrac{MC}{2}\)
\(AM=\dfrac{MC}{2}\)
Do đó: AM=MI=IC
=>AM=MI
=>M là trung điểm của AI
Xét ΔBMC có
D,I lần lượt là trung điểm của CB,CM
=>DI là đường trung bình của ΔBMC
=>DI//BM và \(DI=\dfrac{BM}{2}\)
DI//BM
O\(\in\)BM
Do đó: DI//OM
Xét ΔADI có
M là trung điểm của AI
MO//DI
Do đó: O là trung điểm của AD
b: Xét ΔADI có O,M lần lượt là trung điểm của AD,AI
=>OM là đường trung bình của ΔADI
=>\(OM=\dfrac{1}{2}DI=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BM=\dfrac{1}{4}BM\)
Bài 1:
a: \(\dfrac{AB'}{AB}=\dfrac{AC'}{AC}\)
=>\(\dfrac{AB}{AB'}=\dfrac{AC}{AC'}\)
=>\(\dfrac{AB-AB'}{AB'}=\dfrac{AC-AC'}{AC'}\)
=>\(\dfrac{BB'}{AB'}=\dfrac{CC'}{AC'}\)
=>\(\dfrac{AB'}{BB'}=\dfrac{AC'}{CC'}\)
b: Ta có: \(\dfrac{AB'}{BB'}=\dfrac{AC'}{CC'}\)
=>\(\dfrac{AB'+BB'}{BB'}=\dfrac{AC'+CC'}{CC'}\)
=>\(\dfrac{AB}{BB'}=\dfrac{AC}{CC'}\)
=>\(\dfrac{BB'}{AB}=\dfrac{CC'}{AC}\)
tim abc sao cho
abc+acc+dbc=bcc
abc+acb=bca
abc+ab+a=874
abcd+abc+ab+a=3838
3/Giải
Theo đề bài ta có:
abc + ab + a = 874
( 100a + 10b + c ) + ( 10a + b ) + a = 874
111a + 11b + c = 874 ( 1 )
Từ ( 1 ) suy ra 6 < a < 8
Vậy a = 7
Thay a = 7 vào ( 1 ) ta được:
11b + c = 874 – 777 = 97 ( 2 )
Từ ( 2 ) suy ra 7 < b < 9
Vậy b = 8
Thay b = 8 vào ( 2 ) ta được:
88 + c = 97
c = 97 – 88 = 9
Vậy a = 7, b = 8, c = 9
Ta có:
abc + ab + a = 874
789 + 78 + 7 = 874
- Cho tam giác ABC đồng dạng với MNP và \(\dfrac{S_{ABC}}{S_{MNP}}=9\), chọn đáp án đúng:
\(a.\dfrac{MN}{AB}=9\)
\(b.\dfrac{MN}{AB}=3\)
\(c.\dfrac{MN}{AB}=\dfrac{1}{9}\)
\(d.\dfrac{MN}{AB}=\dfrac{1}{3}\)
- Cho tam giác ABC, AD là phân giác của BAC, AB=16cm, AC=24cm, DC=15cm. Tính BD?
Câu 1: D
Câu 2:
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{16}=\dfrac{15}{24}=\dfrac{5}{8}\)
=>BD=10(cm)
Cho tam giác ABC có góc ABC=75 độ; CH vuông góc AB;CH=AB/2. Chứng minh AB=AC
cho tam giác abc ,m trên ab sao cho am =2/3 ab , n trên ac sao cho an = 2/3 ac . tính amn/abc
Cho tam giác ABC vuông tại A. AB bằng 1/2 BC trên tia đối AB lấy D sao cho AB= AD a) chứng minh tam giác ABC= tam giác ADC b) Tính số đo các góc ABC; ACB GIÚP MÌNH VỚi MÌNH CẦN GẤP