Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Thư
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2022 lúc 10:18

Đặt \(x^2-7x+8=0\)

\(\Delta=\left(-7\right)^2-4\cdot1\cdot8=17>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{17}}{2}\\x_2=\dfrac{7+\sqrt{17}}{2}\end{matrix}\right.\)

Anh Thư
Xem chi tiết
Nguyễn Huy Tú
12 tháng 5 2022 lúc 13:42

Ta có \(x^2-7x+8=0\Leftrightarrow x^2-\dfrac{2.7}{2}x+8=0\)

\(\Leftrightarrow x^2-7x+\dfrac{49}{4}-\dfrac{49}{4}+8=0\Leftrightarrow\left(x-\dfrac{7}{2}\right)^2-\dfrac{17}{4}=0\)

\(\left[{}\begin{matrix}x-\dfrac{7}{2}=\dfrac{\sqrt{17}}{2}\\x-\dfrac{7}{2}=-\dfrac{\sqrt{17}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{17}+7}{2}\\x=\dfrac{-\sqrt{17}+7}{2}\end{matrix}\right.\)

Anh Thư
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2022 lúc 10:17

Đặt \(x^2-7x+8=0\)

\(\Delta=\left(-7\right)^2-4\cdot1\cdot8=17>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{17}}{2}\\x_2=\dfrac{7+\sqrt{17}}{2}\end{matrix}\right.\)

Đỗ Huyền Thu An
Xem chi tiết
Heo Ủn Ỉn
4 tháng 5 2017 lúc 17:34

A(x)=x^2+7x-8=0
=x^2+8x-x-8=0
=x^2-x+8x-8=0
=x(x-1)+8(x-1)=0
=(x+8)(x-1)=0
suy ra x+8=0 hoac x-1=0

Vậy x= -8 hoặc x=1

Đỗ Huyền Thu An
4 tháng 5 2017 lúc 17:35

Ai giúp mình làm bài này với

Nguyễn Trung Quân
Xem chi tiết
Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
Nguyễn Huy Tú
4 tháng 3 2022 lúc 9:30

a, Cho \(x^2+2022x=0\Leftrightarrow x\left(x+2022\right)=0\Leftrightarrow x=0;x=-2022\)

b, \(3x^2+7x+4=0\Leftrightarrow\left(x+1\right)\left(3x+4\right)=0\Leftrightarrow x=-1;x=-\dfrac{4}{3}\)

c, \(2\left(x^2+2x+1-1\right)+5=0\Leftrightarrow2\left(x+1\right)^2+3=0\)(vô lí) 

Vậy đa thức ko có nghiệm tm 

Gia Nghi
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2023 lúc 23:21

Đặt N(x)=0

=>x^2+7x+18=0

Δ=7^2-4*1*18=49-72=-23<0

=>N(x) ko có nghiệm

what the fack
Xem chi tiết

để dda thức có nghiêm thì 

x2+7x-8=0

<=> x(x+8)-(x+8)=0

<=> (x-1)(x+8)=0

\(< =>\orbr{\begin{cases}x-1=0\\x+8=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)

Vậy đa thức có 2 nghiệm là 1 và -8

Huy Hoàng
8 tháng 4 2018 lúc 11:53

Khi m (x) = 0

=> \(x^2+7x-8=0\)

=> \(x^2-x+8x-8=0\)

=> \(\left(x^2-x\right)+\left(8x-8\right)=0\)

=> \(x\left(x-1\right)+8\left(x-1\right)=0\)

=> \(\left(x-1\right)\left(x-8\right)=0\)

=> \(\orbr{\begin{cases}x-1=0\\x-8=0\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=8\end{cases}}\)

Vậy đa thức m (x) có 2 nghiệm: x1 = 1; x2 = 8.

sú
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 5 2022 lúc 22:06

Đặt \(-16x^2+7x+18=0\)

\(\text{Δ}=7^2-4\cdot\left(-16\right)\cdot18=1201>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-7-\sqrt{1201}}{-32}=\dfrac{7+\sqrt{1201}}{32}\\x_2=\dfrac{7-\sqrt{1201}}{32}\end{matrix}\right.\)