Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngu Ngu Ngu
Xem chi tiết
Ngu Ngu Ngu
26 tháng 3 2017 lúc 9:17

Cộng vế với vế ta được:

\(x+y+z=2\left(ax+by+cz\right)\)

Thay thích hợp ta được:

\(x+y+z=2\left(z+cz\right)=2z\left(1+c\right)\Rightarrow1+c=\frac{x+y+z}{2z}\)

Tương tự ta có:

\(1+b=\frac{x+y+z}{2y};1+a=\frac{x+y+z}{2x}\)

Thay vào B ta có:

\(B=\sqrt{\frac{2}{\frac{x+y+z}{2x}}+\frac{2}{\frac{x+y+z}{2y}}+\frac{2}{\frac{x+y+z}{2z}}}\)

\(=\sqrt{\frac{4x}{x+y+z}+\frac{4y}{x+y+z}+\frac{4z}{x+y+z}=\frac{4\left(x+y+z\right)}{x+y+z}}\)

\(=\sqrt{4}=2\)

Đúng thì k, sai thì sửa, mai mình nộp cho cô rồi

Lãng Tử Hào Hoa
Xem chi tiết
Hibari Kyoya_NMQ
Xem chi tiết
Kurosaki Akatsu
16 tháng 8 2017 lúc 15:03

Làm biếng chép :'<

Link : Câu hỏi jj đó vào đây rồi biết :)) 

Hibari Kyoya_NMQ
17 tháng 8 2017 lúc 9:24
dài quá, ko chép đâu
HKT_Bí Mật
18 tháng 8 2017 lúc 21:20

lười quá đê ông ơi

Yến Nhi Libra Virgo HotG...
Xem chi tiết
Nguyễn Thiều Công Thành
10 tháng 7 2017 lúc 19:59

x=by+cz;y=ax+cz;z=ax+by

=>x+y+z=2(ax+by+cz)

\(\Leftrightarrow\frac{x+y+z}{2}=ax+by+cz\)

\(\Leftrightarrow y+z=\frac{x+y+z}{2}+ax;z+x=\frac{x+y+z}{2}+by;x+y=\frac{x+y+z}{2}+cz\)

\(\Leftrightarrow\frac{y+z-x}{2}=ax;\frac{z+x-y}{2}=by;\frac{x+y-z}{2}=cz\)

\(\Leftrightarrow\frac{y+z-x}{2x}=a;\frac{z+x-y}{2y}=b;\frac{x+y-z}{2z}=c\)

\(\Rightarrow A=\frac{1}{1+\frac{x+y-z}{2z}}+\frac{1}{1+\frac{y+z-x}{2x}}+\frac{1}{1+\frac{z+x-y}{2y}}=\frac{1}{\frac{x+y+z}{2x}}+\frac{1}{\frac{x+y+z}{2y}}+\frac{1}{\frac{x+y+z}{2z}}\)

\(=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Nguyễn Thiều Công Thành
8 tháng 7 2017 lúc 21:40

thiếu đề

Đồ Ngốc
Xem chi tiết
Hoàng Thị Thu Hà
27 tháng 6 2017 lúc 16:50

Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{a+b+c}{x+y+z}=k\)

\(\Rightarrow\hept{\begin{cases}a=kx;b=ky;c=kz\Rightarrow a^2=k^2x^2;b^2=k^2y^2;c^2=k^2z^2\\a+b+c=k\left(x+y+z\right)\end{cases}}\)

Có: \(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{x^2+y^2+z^2}{\left(kx^2+ky^2+kz^2\right)^2}=\frac{x^2+y^2+z^2}{k^2\left(x^2+y^2+z^2\right)^2}=\frac{1}{k^2\left(x^2+y^2+z^2\right)}\)

\(=\frac{1}{k^2x^2+k^2y^2+k^2z^2}=\frac{1}{a^2+b^2+c^2}\)(đpcm)

Bùi Thị Ngọc Yến Nhi
Xem chi tiết
Nguyễn Khắc Quang
Xem chi tiết
alibaba nguyễn
12 tháng 3 2021 lúc 22:00

Ta có:

\(2a+2b+2c=by+cz+ax+cz+ax+by\)

\(\Leftrightarrow a+b+c=ax+by+cz\)

\(\Rightarrow a+b+c=ax+2a;a+b+c=by+2b;a+b+c=cz+2c\)

\(\Leftrightarrow\frac{1}{x+2}=\frac{a}{a+b+c};\frac{1}{y+2}=\frac{b}{a+b+c};\frac{1}{z+2}=\frac{c}{a+b+c}\)

\(\Rightarrow A=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

Khách vãng lai đã xóa
Ngô Chi Lan
12 tháng 3 2021 lúc 22:19

Ta có:\(\hept{\begin{cases}2a=by+cz\\2b=ax+cz\\2c=ax+by\end{cases}}\)

\(\Leftrightarrow2a+2b+2c=by+cz+ax+cz+ax+by\)

\(\Leftrightarrow2a+2b+2c=2ax+2by+2cz\)

\(\Leftrightarrow2a+2b+2c-2ax-2by-2cz=0\)

\(\Leftrightarrow\left(2a-2ax\right)+\left(2b-2by\right)+\left(2c-2cz\right)=0\)

\(\Leftrightarrow2a\left(1-x\right)+2b\left(1-y\right)+2c\left(1-z\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}1-x=0\\1-y=0\\1-z=0\end{cases}\Leftrightarrow x=y=z=1}\)

\(\Rightarrow A=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{1}{1+2}+\frac{1}{1+2}+\frac{1}{1+2}=1\)

Khách vãng lai đã xóa
Minatozaki Sana
Xem chi tiết
Văn Duy Trương
17 tháng 2 2017 lúc 21:41

mik đoán là 3 ík

Lê Thị Trà MI
Xem chi tiết
GV
21 tháng 12 2017 lúc 10:51

Ta có: \(x+y+z=\left(by+cz\right)+\left(ax+cz\right)+\left(ax+by\right)=2\left(ax+by+cz\right)\)

=> \(x+y+z=2\left(ax+by+cz\right)=2\left[\left(ax+by\right)+cz\right]=2\left[z+cz\right]=2\left(1+c\right)z\)

=> \(\frac{1}{1+c}=\frac{2z}{x+y+z}\)    (1)

Tượng tự:

    \(\frac{1}{1+a}=\frac{2x}{x+y+z}\)    (2)

    \(\frac{1}{1+b}=\frac{2y}{x+y+z}\)     (3)

Cộng các vế của (1), (2), (3) ta có:

    \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=\frac{2\left(x+y+z\right)}{x+y+z}=2\) (ĐPCM)

Tran Le Khanh Linh
10 tháng 5 2020 lúc 16:54

Ta có x+y=ax+by+2cz=z+2cz 

=> x+y-z=2cz

=> \(c=\frac{x+y-z}{2z}\Rightarrow c+1=\frac{x+y-z}{2z}+1=\frac{x+y+z}{2z}\)

\(\Rightarrow\frac{1}{c+1}=\frac{2z}{x+y+z}\left(1\right)\)

\(y+z=2ax+by+cz\Rightarrow y+z-x=2ax\Rightarrow a=\frac{y+z-x}{2x}\Rightarrow a+1=\frac{x+y+z}{2x}\)

\(\Rightarrow\frac{1}{a+1}=\frac{2x}{x+y+z}\left(2\right)\)

\(z+x=2by+ax+cz=2by+y\Rightarrow z+x-y=2by\)

\(\Rightarrow b=\frac{z+x-y}{2y}\Rightarrow b+1=\frac{z+x-y}{2y}+1=\frac{x+y+z}{2y}\)

\(\Rightarrow\frac{1}{b+1}=\frac{2y}{x+y+z}\left(3\right)\)

Cộng từng vế của (1)(2)(3) ta có 

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Khách vãng lai đã xóa