9\(^{x+2}\) + 9\(^x\) = 82
1) (x-2)^2-4x+8
2) x^3+10x+25x-xy^2
3) a^3+6a^2+9a-ab^2
4) a^3+10-3(2-a^3)
5) 9x^3-9x^2y-4x+4y
1: \(\left(x-2\right)^2-4x+8\)
\(=\left(x-2\right)\left(x-2-4\right)\)
\(=\left(x-2\right)\left(x-6\right)\)
3: \(a^3+6a^2+9a-ab^2\)
\(=a\left(a^2+6a+9-b^2\right)\)
\(=a\left(a+3-b\right)\left(a+3+b\right)\)
Rút gọn: (3x -1)2 - 3x(3x-1)
tìm x : (3x-5)2 - 9x(x+3) = 82
`x^13-9x^12+9x^11-9x^10+....-9x^2+9x-2`
với ` x=2024`
x^13 - 9x^12 + 9x^11 - 9x^10 +...-9x^2 + 9x -2 với x = 8
\(8^{13}-9.8^{12}+9.8^{11}-9.8^{10}+.....-9.8^2+9.8-2\)
\(=8^{13}-\left(8+1\right).8^{12}+\left(8+1\right).8^{11}-\left(8+1\right).8^{10}+....-\left(8+1\right).8^2+\left(8+1\right).8-2\)
\(=8^{13}-8^{13}-8^{12}+8^{12}+8^{11}-8^{11}-8^{10}+....-8^3-8^2+8^2+8-2\)
\(=\left(8^{13}-8^{13}\right)-\left(8^{12}-8^{12}\right)+\left(8^{11}-8^{11}\right)-....-\left(8^2-8^2\right)+8-2\)
\(=8-2=6\)
Tìm x thuộc Z biết:
a) 4(x+1) - (3x+1)=14
b) -12(x-5) + 7(3x) =5
c) 17(x+2) - 4(x-7) - 9x = 82
a) 4(x+1)-(3x+1)=14
<=>4x+4-3x-1=14
<=>4x-3x = 14-4
<=>x=10
b) -12(x-5) +7.(3x)=5
<=> -12x +60 + 21+7x=5
<=> -12x+7x=5-60-21
<=> -5x=-76
<=> x=76/5
c) 17x + 34 -4x+28-9x=82
<=> 17x-9x-4x=82-34-28
<=> 4x=20
<=> x=5
tìm gtnn của
a)3x2-x+1
b)x4-4x+9x2-20x+22
c)5x2+9y2-12xy+24x-48y+82
a)Đặt \(A=3x^2-x+1\)
\(A=3\left(x^2-2.\frac{1}{6}x+\frac{1}{36}\right)+\frac{11}{12}\)
\(A=3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\)
Vì \(3\left(x-\frac{1}{6}\right)^2\ge0\Rightarrow3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}\)
Dấu = xảy ra khi \(x-\frac{1}{6}=0\Rightarrow x=\frac{1}{6}\)
Vậy Min A = \(\frac{11}{12}\) khi x=1/6
b)Tương tụ
F=x^13-9x^12+9x^11-9x^10+.....-9x^2+9x-2 với x=8
Tính giá trị biểu thức trên 1 cách hợp lý
x=8 nên x+1=9
\(F=x^{13}-9x^{12}+9x^{11}-9x^{10}+...-9x^2+9x-2\)
\(=x^{13}-x^{12}\left(x+1\right)+x^{11}\left(x+1\right)-x^{10}\left(x+1\right)+...-x^2\left(x+1\right)+x\left(x+1\right)-2\)
\(=x^{13}-x^{13}-x^{12}+x^{12}+...-x^3-x^2+x^2+x-2\)
=x-2
=8-2
=6
Tìm 2 nghiệm của đa thức sau F(x)= x10 - 9x9 + 9x8 - 9x7 +....+ 9x2 - 9x+8
Để F(x) có nghiệm <=> x^10 - 9x^9 + ... + 9x^2 - 9x +8 = 0
<=> (x^10 - x^9) - (8x^9 - 8x^8) + (x^8 - x^7) - ... + (x^2 - x) - (8x - 8) = 0
<=> x^9(x - 1) - 8x^8(x - 1) + ... + x(x - 1) - 8(x - 1) = 0
<=> (x^9 - 8x^8 + ... + x - 8)(x - 1) = 0
<=> ( (x^9 - 8x^8) + (x^7 - 8x^6) + ... + (x - 8) )(x - 1) = 0
<=> (x^8 + x^6 + ... + 1)(x - 8)(x - 1) = 0
Có nghiệm là 8 và 1
Tìm x biết :
a, ( 3x + 2016 ) - ( 2x - 15 ) = 2016
b, - 2(x + 41 ) - (8x - 82 ) = 3 - 9x
c, ( 4x - 1) - (52 + 3x) = 2x - 41
d, - ( 3x + 217 ) - ( 4x - 217) + 5 = 3 - 8x