Chứng Minh trong một tứ giác tổng 2 đường chéo lớn hơn tổng 2 cạnh đối
Chứng minh rằng trong 1 tứ giác, tổng 2 đường chéo lớn hơn tổng 2 cạnh đối
Chứng minh rằng trong 1 tứ giác, tổng 2 đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy
Chứng minh rằng trong một tứ giác:
a) tổng 2 đường chéo lớn hơn tổng 2 cạnh đối
b) tổng 2 đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi tứ giác đó và nhỏ hơn chu vi tứ giác đó:
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
* giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
Bạn tham khảo ở đây :
/hoi-dap/question/76098.html
Chứng minh rằng trong 1 tứ giác,tổng 2 đường chéo lớn hơn tổng 2 cạnh đối.
Chứng minh rằng trong một tứ giác thì :
a ) tổng độ dài 2 cạnh đối diện nhỏ hơn tổng độ dài 2 đường chéo
b ) tổng độ dài 2 đường chéo lớn hơn nửa chu vi của tứ giác
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn tổng hai cạnh đối.
Gọi O là giao điểm của hai đường chéo AC và BD
* Trong ∆ OAB, ta có:
OA + OB > AB (bất đẳng thức tam giác) (1)
* Trong ∆ OCD, ta có:
OC + OD > CD (bất đẳng thức tam giác) (2)
Cộng từng vế (1) và (2):
OA + OB + OC + OD > AB + CD
⇒ AC + BD > AB + CD
Chứng minh rằng trong một tứ giác thì :
a ) tổng độ dài 2 cạnh đối diện nhỏ hơn tổng độ dài 2 đường chéo
b ) tổng độ dài 2 đường chéo lớn hơn nửa chu vi của tứ giác nhưng nhỏ hơn chu vi tứ giác đó
1) chứng minh rằng trong một tứ giác,tổng hai đường chéo lớn hơn tổng hai cạnh đối
2)chứng minh rằng trong một tứ giác,tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy
các bạn giúp mình bài này với
Chứng minh rằng trong 1 tứ giác tổng 2 đường chéo lớn hơn 2 cạnh đối
Xét tam giác AEC , tam giác DEB
AE+EC>=AC
BE+DE>=BD
====>AE+EC+BE+DE>=AC+BD
AD+BC>=AC+BD
Vậy....................(đpcm)
Gọi O là giao điểm của hai đường chéo AC và BD.
Trong ∆OAB, ta có:
OA + OB > AB (bất đẳng thức tam giác) (1)
Trong ∆OCD, ta có:
OC + OD > CD (bất đẳng thức tam giác) (2)
Cộng từng vế (1) và (2):
OA + OB + OC + OD > AB + CD
⇒ AC + BD > AB + CD
Chứng minh rằng trong một tứ giác, tổng độ dài hai đường chéo lớn hơn tổng hai cạnh đối.
Gọi O là giao điểm của 2 đường chéo AC và BD của hình tứ giác ABCD
Trong các tam giác AOB và COD theo bất đẳng thức tam giác ta lần lượt có :
OA + OB > AB
OC + OD > CD
Cộng theo từng vế bất đẳng thức trên ta có :
AB + BD > AB + CD ( đpcm )