Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Thư
Xem chi tiết
Đào Hâm
Xem chi tiết
Lê Nguyên Hạo
15 tháng 8 2016 lúc 21:08

 Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi tứ giác đó và nhỏ hơn chu vi tứ giác đó: 
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm) 
* giao của AC và BD là O. 
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC 
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC 
cổng 4 bất đẳng thức cùng chiề này lại ta có: 
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA 
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm) 

Hoàng Lê Bảo Ngọc
15 tháng 8 2016 lúc 21:19

Bạn tham khảo ở đây : 

/hoi-dap/question/76098.html

nguyễn thị tuyết nhi
Xem chi tiết
nguyễn nam dũng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 3 2017 lúc 14:44

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm của hai đường chéo AC và BD

* Trong  ∆ OAB, ta có:

OA + OB > AB (bất đẳng thức tam giác) (1)

* Trong ∆ OCD, ta có:

OC + OD > CD (bất đẳng thức tam giác) (2)

Cộng từng vế (1) và (2):

OA + OB + OC + OD > AB + CD

⇒ AC + BD > AB + CD

truong hung dung
Xem chi tiết
han nguyen
Xem chi tiết
Lê Thị Bích Chăm
Xem chi tiết
Thảo Nguyên Xanh
25 tháng 9 2016 lúc 21:53

Xét tam giác AEC , tam giác DEB

AE+EC>=AC

BE+DE>=BD

====>AE+EC+BE+DE>=AC+BD

AD+BC>=AC+BD

Vậy....................(đpcm)

A B D C O

Gọi O là giao điểm của hai đường chéo AC và BD.

Trong  ∆OAB, ta có:                                                                  

OA + OB > AB (bất đẳng thức tam giác) (1)  

Trong ∆OCD, ta có:

OC + OD > CD (bất đẳng thức tam giác) (2)

Cộng từng vế (1) và (2):

OA + OB + OC + OD > AB + CD

⇒ AC + BD > AB + CD

Nguyen Dang Khoa
Xem chi tiết
cường xo
16 tháng 3 2020 lúc 16:03

Gọi O là giao điểm của 2 đường chéo AC và BD của hình tứ giác ABCD

Trong các tam giác AOB và COD theo bất đẳng thức tam giác ta lần lượt có :

          OA + OB > AB

         OC + OD > CD

Cộng theo từng vế bất đẳng thức trên ta có :

       AB + BD > AB + CD  ( đpcm )

Khách vãng lai đã xóa