Cho tỉ lệ thức: x/7=y/3. Tính x và y biết:
x/2=y/3=z/5 và x.y.z=810
Tìm x; y; z biết:
a) 2/x=3/y va x.y=96
b) x/12=y/9=z/5 và x.y.z=26
c)x/2=y/3=z/5 và x.y.z = 810
d)x/5=y/7=z/3 va x2+y2-z2=585
a) 2/x=3/y va x.y=96
b) x/12=y/9=z/5 và x.y.z=26
c)x/2=y/3=z/5 và x.y.z = 810
Tìm x,y,z, biết:
x và y tỉ lệ nghịch với 6 và 5, y và z tỉ lệ nghịch với 4 và 3; biết x+y+z = 38
x và y tỉ lệ nghịch với 6 và 5
nên 6x=5y
=>x/5=y/6
y và z tỉ lệ nghịch với 4 và 3
nên 4y=3z
=>y/3=z/4
=>x/5=y/6=z/8=(x+y+z)/(5+6+8)=38/19=2
=>x=10; y=12; z=16
tìm x,y,x biết x/2=y/3=z/5 và x.y.z=810
Tìm x; y biết x/2=y/3=z/5 và x.y.z = 810
tìm các số x,y,z biết; x\2=y\3=z\5 và x.y.z=810
đặt x\2=y\3=z\5=k
=>x=2k
y=3k
z=5k
thay x=2k;y=3k;z=5k vào x.y.z=810 ta được:
2k.3k.5k=810
30k3=810
k3=27
k3=33
=>k=3
=>x=2.3=6
y=3.3=9
z=5.3=15
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}\)và 2x+y-z=81
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{2}\)và 5x-y+3z=124
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)và x.y.z=810
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{6}\)và\(x^2.y^2.z^2=288^2\)
a.
Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=3k\\z=4k\end{matrix}\right.\)
Thế vào \(2x+y-z=81\)
\(\Rightarrow2.5k+3k-4k=81\)
\(\Rightarrow9k=81\)
\(\Rightarrow k=9\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k=45\\y=3k=27\\z=4k=36\end{matrix}\right.\)
b.
Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{2}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\\z=2k\end{matrix}\right.\)
Thế vào \(5x-y+3z=124\)
\(\Rightarrow5.3k-5k+3.2k=124\)
\(\Rightarrow16k=124\)
\(\Rightarrow k=\dfrac{31}{4}\) \(\Rightarrow\left\{{}\begin{matrix}x=3k=\dfrac{93}{4}\\y=5k=\dfrac{155}{4}\\z=2k=\dfrac{31}{2}\end{matrix}\right.\)
c.
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
Thế vào \(xyz=810\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k=6\\y=3k=9\\z=5k=15\end{matrix}\right.\)
d.
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{6}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=6k\end{matrix}\right.\)
Thế vào \(x^2y^2z^2=288^2\)
\(\Rightarrow\left(2k\right)^2.\left(3k\right)^2.\left(6k\right)^2=288^2\)
\(\Rightarrow\left(k^2\right)^3=64\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k=4\\y=3k=6\\z=6k=12\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=2k=-4\\y=3k=-6\\z=6k=-12\end{matrix}\right.\)
Tính x,y,z
x\2 = y\3 = z\5 ; x.y.z=810
Đặt x/2=y/3=z/5=k
=>x=2k;y=3k;z=5k(1)
Ta có x.y.z=810(2)
Thay (1) vào (2)
=>2k.3k.5k
30.k^3=810
k^3=27=>k=3
=>x=2.3=6
y=3.3=9
z=5.3=15
x/2=y/3=z/5 và x.y.z =810
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
\(x.y.z=810\Rightarrow2k.3k.5k=810\Rightarrow30k^3=810\Rightarrow k^3=27\Rightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=15\end{cases}}\)