Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huyen Mai
Xem chi tiết
Phan Vũ Như Quỳnh
Xem chi tiết
tth_new
16 tháng 3 2018 lúc 19:27

Đăng từ bài thôi bạn à!

a) Áp dụng công thức: \(\frac{1}{a-1}-\frac{1}{a}=\frac{1}{\left(a-1\right)a}>\frac{1}{a.a}=\frac{1}{a^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{4^2}< \frac{1}{3}-\frac{1}{4}\)

..............................

\(\frac{1}{n^2}< \frac{1}{n-1}-\frac{1}{n}\)

___________________________________________

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}=\frac{1}{n+1}< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\) (đpcm)

Vô DANH
Xem chi tiết
nguyễn tiến hanh
29 tháng 3 2017 lúc 19:00

câu hỏi của bạn tớ cũng đang mắc 

Vô DANH
29 tháng 3 2017 lúc 19:05

Bạn cũng có đề này à nguyễn tiến hanh ?

nguyễn tiến hanh
29 tháng 3 2017 lúc 19:09

nhân h với a ta được 

ah=1/a+2/a^2+.......+n/a^n

ah-h=(1/a+2/a^2+.......+n/a^n)-(1/a^2+2/a^3+.....+n/a^n+1)

       =1/a+(2/a^2-1/a^2)+.......+(n/a^n-n-1/a^n)+1/a+n/a^n+1

       =(1/a+1/a^2+1/a^3+...+1/a^n)+n/a^n+1

mình mới nghĩ được đến đấy thôi

có phải câu này có trong đề thi giữa học kì 2 môn toán 6 năm 2017 không

Lưu Quang Bách
Xem chi tiết
Kiệt Nguyễn
1 tháng 5 2019 lúc 10:06

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow M< 1-\frac{1}{99}< 1\)

Dễ thấy M > 0 nên 0 < M < 1

Vậy M không là số tự nhiên.

Kiệt Nguyễn
1 tháng 5 2019 lúc 10:08

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\left(đpcm\right)\)

Kiệt Nguyễn
1 tháng 5 2019 lúc 10:09

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S< \frac{1}{50}+\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\)(50 số hạng \(\frac{1}{50}\))

\(\Rightarrow S< \frac{1}{50}.50=1\)

Vậy S < 1 (đpcm)

Dark Killer
Xem chi tiết
Dark Killer
4 tháng 7 2016 lúc 21:05

À mình viết lộn đề câu 1, co mình sửa lại nhá!

 1) Tìm số nguyên n thỏa:

   \(\sqrt[3]{n+\sqrt{n^2+27}}+\sqrt[3]{n-\sqrt{n^2+27}}=4\)

Nguyễn Nam Cao
4 tháng 7 2016 lúc 21:10

Khi đó nếu bỏ chữ số tận cùng thì số mới là abc

Ta có:

abc3 - abc = (1000a + 100b + 10c + 3) - (100a + 10b + c)

                 => 900a + 90b + 9c + 3=1992

                 => 900a + 90b + 9c=1989

                 => 9(100a + 10b + c)=1989

                 => 100a + 10b + c = 221

                 => abc = 221

                 => abc3 = 2213

              Vậy số cần tìm là 2213

Hollow Ichigo 3
4 tháng 7 2016 lúc 21:15

Bạn lên google mà tìm

Hiền Thảo Bùi
Xem chi tiết
Nguyễn Ngọc Quý
28 tháng 2 2016 lúc 18:00

Ta có: A  > 1 (dĩ nhiên)

A\(A<1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right)n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-...-\frac{1}{n}=1+\frac{1}{1}-\frac{1}{n}=2-\frac{1}{n}<2\)Nên 1 < A < 2 nên A không phải là số tự nhiên 

Kochou Shinobu
Xem chi tiết
Dương Thiên Tuệ
Xem chi tiết
Ngô Hải Hà
Xem chi tiết
Thắng Nguyễn
19 tháng 4 2016 lúc 18:48

câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008

ta có:\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)

\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}

Thắng Nguyễn
19 tháng 4 2016 lúc 18:52

câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008

\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)

\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\)\( (1)