tìm x,y,z biết xy=30 , y-y=-12
tìm x , y,z biết xy=30 , z- y = -12
B1:Tìm x,biết:
x-1000/24+x-998/26+x-996/28=3
B2:Tìm x,y và z
a)xy=-3/5;yz=-4/5;zx=3/4
b)x(x+y+z)=-12
-y(-y-z-x)=18
z(y+z+x)=30
c)xy=z;yz=4x;zx=9y
Lời giải:
Tập xác định của phương trình
Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
Chia cả hai vế cho cùng một số
Đơn giản biểu thức
Lời giải thu được
Ẩn lời giải
Kết quả: Giải phương trình với tập xác định
Tìm các số nguyên dương x;y;z thỏa mãn: xy(x+y)=6;yz(y+z)=12;zx(z+x)=30
Tìm x ; y; z biết :
x( x + y + z ) = -12 ; y( y + z +x ) = 18 ; z(z + x + y) =30
Theo đề ta có :
x(x+y+z) + y(x+y+z) + z(x+y+z) = -12 + 18 + 30
=> (x+y+z) (x+y+z) = 36
=> (x+y+z)\(^2=36\)
\(\Rightarrow\orbr{\begin{cases}x+y+z=-6\\x+y+z=6\end{cases}}\)
* Trường hợp x+y+z=-6
\(\Rightarrow x=x\left(x+y+z\right):\left(x+y+z\right)=-12:-6=2\)
\(\Rightarrow y=y\left(x+y+z\right):\left(x+y+z\right)=18:-6=-3\)
\(\Rightarrow z=z\left(x+y+z\right):\left(x+y+z\right)=30:-6=-5\)
*Trường hợp x+y+z=6
\(\Rightarrow x=x\left(x+y+z\right):\left(x+y+z\right)=-12:6=-2\)
\(\Rightarrow y=y\left(x+y+z\right):\left(x+y+z\right)=18:6=3\)
\(\Rightarrow z=z\left(x+y+z\right):\left(x+y+z\right)=30:6=5\)
Vậy :....
x ( x + y + z ) = - 12 ; y ( y + z +x ) = 18 ; z (z + x + y) =30
=> x ( x + y + z ) + y ( y + z +x ) + z (z + x + y) = - 12 + 18 + 30
=> x ( x + y + z ) + y ( x + y + z ) + z ( x + y + z ) = 36
=> ( x + y + z ) ( x + y + z ) = 36
=> ( x + y + z )2 = 36
=> x + y + z = 6 hoặc x + y + z = - 6
* TH1: x + y + z = 6
=> x . 6 = - 12 => x = - 2
y . 6 = 18 => y = 3
z . 6 = 30 => z = 5
* TH2: x + y + z = - 6
=> x . ( - 6) = - 12 => x = 2
y . ( - 6) = 18 => y = - 3
z . ( - 6) = 30 => z = - 5
Vậy ( x ; y ; z ) = ( - 2 ; 3 ; 5 ) ; ( 2 ; - 3 ; - 5 )
\(x\left(x+y+z\right)=-12\)
\(\Rightarrow\)\(x+y+z=-\frac{12}{x}\) (1)
\(y\left(y+z+x\right)=18\)
\(\Rightarrow\)\(x+y+z=\frac{18}{y}\) (2)
\(z\left(z+x+y\right)=30\)
\(\Rightarrow\)\(x+y+z=\frac{30}{z}\) (3)
Từ (1), (2) và (3) suy ra \(-\frac{12}{x}=\frac{18}{y}=\frac{30}{z}\)
Đặt \(-\frac{12}{x}=\frac{18}{y}=\frac{30}{z}=k\left(k\ne0\right)\)
\(\Rightarrow\)\(\hept{\begin{cases}x=-12k\\y=18k\\z=30k\end{cases}}\) (4)
Thế (4) vào (1) ta được:
\(-12k+18k+30k=-\frac{12}{-12k}\)
\(\Rightarrow\)\(36k=\frac{1}{k}\)
\(\Rightarrow\)\(k=\frac{1}{6}\) (5)
Thế (5) vào (4) ta được:
\(\hept{\begin{cases}x=-12\cdot\frac{1}{6}=-2\\y=18\cdot\frac{1}{6}=3\\z=30\cdot\frac{1}{6}=5\end{cases}}\)
Vậy \(\hept{\begin{cases}x=-2\\y=3\\z=5\end{cases}}\)
Tìm x,y,z biết
x(x+y+z)=-12;y(x+y+z)=18;z(x+y+z)=30
Ta có: x(x + y + x) = -12
y(x + y + z) = 18
z(x + y + z) = 30
cộng vế với vế, ta được :
x(x + y + z) + y(x + y + z) + z(x + y + z) = -12 + 18 + 30
=> (x + y + z)(x + y + z) = 36
=> (x + y + z)2 = 62
=> (x + y + z) = \(\pm\)6
Với x + y + z = 6
=> x .6 = -12
=> x = -12 : 6
=> x = -2
còn lại tương tự
tìm x y z biết x : y = -30 ; y : z = 42 và z - x = -12
+) Ta có: yz-xy=42+30
=>y(z-x)=72
=>-12y =72
=>y =-6
+) Mà x.y=-30
=>x.(-6)=-30
=>x =5
y.z=42
=>-6.z=42
=>z =-7
Vậy (x;y;z)=(5;-6;-7)
Tìm các số hữu tỉ x,y,z biết:
x×(x+y+z)= -12 ; y×(y+z+x)=18 ; z×(z+x+y)=30
Cộng theo vế 3 dữ kiện của bài toán ta được:
\(\left(x+y+z\right)^2=36\)
<=> \(x+y+z=\pm6\)
TH1: x+y+z=6
=> x= -12:6=-2
y = 18:6=3
z= 30:6=5
TH2 : x+y+z =-6
=> x= -12:-6=2
y= 18:-6=-3
z= 30:-6=-5
Vậy các cặp số hữu tỉ (x;y;z) là : \(\left(-2;3;5\right);\left(2;-3;-5\right)\)
Tìm x, y, z biết:
y(x+y+z)=18
x(x+y+z)= -12
z(x+y+z)=30
Từ đề suy ra:
y(x+y+z) + x(x+y+z) + z(x+y+z) = 18 -12 +30
(x+y+z)^2 = 36
x+y+z = +- 6
Chia làm 2 trường hợp: x+y+z = -6 và x+y+z = 6. Tự giải tiếp nhé bạn ^^!
Tìm các số hữu tỉ x, y, z, biết
x×(x+y+z)=-12; y×(y+z+x)=18; z×(z+x+y)=30