chứng minh rằng nếu a/b = c/d thì (a-b/c-d)= a^2+b^4/ c^4+d^4
a)Chứng minh rằng nếu a^4 +b^4 +c^4 +d^4 =4abcd và a,b,c,d là các số dương thì a =b=c=d
b)Chứng minh rằng nếu m= a+ b +c thì (am+ bc )(bm+ac)(cm+ab)= (a+b)^2 (a+c )^2 (b+c)^2
b, Ta có \(m=a+b+c\)
\(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)
CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)
Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
Chứng minh rằng:
a) Nếu (a+b+c+d)(a-b-c-+d)=(a-b+c-d)(a+b-c-d) thì \(\frac{a}{b}\)=\(\frac{c}{d}\)(a,b,c,d khác 0)
b)Nếu a+b+c=0 thì a3+b3+c3=3abc
c)Cho x2=a2+b2+ab và a+b+c=0. Chứng minh 2x4=a4+b4+c4
a) Ta có: (a + b + c + d)(a - b - c +d )=( (a + d) + (b + c) )( (a + d) - (b + c) )
=(a + d )2 - (b +c )2 (1)
(a - b + c - d)(a + b - c - d)=(a - d)2 - (b - c)2 (2)
Từ (1) và (2) => a2 + 2ad + d2 - b2 - 2bc - c2=a2 - 2ad + d2 - b2 + 2bc - c2
4ad=4bc => ad=bc <=> \(\frac{a}{c}=\frac{b}{d}\) (đpcm)
Chứng minh rằng nếu \(a^4+b^4+c^4+d^4=4abcd\)
Và a, b, c, d là các số dương thì a=b=c=d
Áp dụng BĐT Cauchy, ta có:
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}=4abcd\)
Dấu = xảy ra khi a=b=c=d
Vậy a=b=c=d
Chứng minh rằng nếu (a+b+c+d)(a-b-c-d)=(a-b-c+d)(a+b-c-d) thì 4 số a,b,c,d lập thành 1 tỉ lệ thức
Chứng minh rằng nếu có(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d) thì 4 số a,b,c,d lập thành 1 tỉ lệ thức.
chứng minh rằng nếu có a/b=c/d thì (a-b/c-d)4=a4+b4/ c4+ d4
Áp dụng tính chất dãy tỉ số bằng nhau (giả sử tất cả các mẫu số trong phép biến đổi đều khác 0)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\left(\frac{a-b}{c-d}\right)^4=\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\)
Chứng minh rằng :
a, Nếu \(a^2+b^2=2ab\) thì a=b
b, Nếu \(a^3+b^3+c^3=3abc\) và a,b,c là các số dương thì a=b=c
c, Nếu \(a^4+b^4+c^4+d^4=4abcd\) và a,b,c,d là các số dương thì a=b=c=d
\(a^2+b^2=2ab\)
<=> \(a^2+b^2-2ab=0\)
<=> \(\left(a-b\right)^2=0\)
<=> \(a-b=0\)
<=> \(a=b\) (đpcm)
\(a^3+b^3+c^3=3abc\)
<=> \(a^3+b^3+c^3-3abc=0\)
<=> \(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
<=> \(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
<=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
Xét: \(a^2+b^2+c^2-ab-bc-ca=0\)
<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)
<=> \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)
<=> \(a=b=c\)
=> đpcm
cách khác:
Áp dụng BĐT AM-GM ta đc:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu "=" xảy ra <=> \(a=b=c\)
c) bạn lm tương tự
Chứng minh rằng nếu a4+b4+c4+d4=4abcd và ,b,c,d là số nguyên dương thì a=b=c=d
bài này cũng có thể giải bằng cauchy 2 số
a^4+b^4+c^4+d^4≥2a^2b^2+2c^2d^2
<=>a^4+b^4+c^4+d^4≥2(a^2b^2+c^2d^2)
<=>a^4+b^4+c^4+d^4≥2.2abcd
<=>a^4+b^4+c^4+d^4≥4abcd
dấu "=" xảy ra khi {a^4=b^4;c^4=d^4;a^2b^2=c^2d^2 =>a=b=c=d
( dấu ^ là nâng lên lũy thừa nhiên bạn )
Huỳnh Minh Quý lm đúng òi đó
1.Chứng minh các đẳng thức sau
a)(a+b+c)^2+(b+c-a)^2+(c+a-b)^2= 4(a^2+b^2+c^2)
b)(a+b+c+d)^2+(a+b+c-d)^2+(a+c-b-d)^2+(a+d-b-c)^2= 4(a^2+b^2+c^2+d^2)
c)(a^2-b^2-c^2-d^2)+2(ab-bc+cd+da)^2= (a^2+b^2+c^2+d^2)-2(ab-ad+bc+dc)^2
d)(a+b+c)^2+a^2+b^2+c^2= (a+b)^2+(b+c)^2=(c+a)^2
2. Chứng minh rằng
a) Nếu (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d) thì a/b=c/d
b) Nếu (a+b+c)^2= 3(ab+bc+ca) thì a=b=c