Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lộc Nguyễn
Xem chi tiết
Nguyễn Hải Minh
2 tháng 5 2021 lúc 12:54

b, Ta có \(m=a+b+c\)

          \(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)

CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)

Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)

Khách vãng lai đã xóa
Quân Nguyễn Anh
Xem chi tiết
Nguyễn Quang Linh
5 tháng 8 2015 lúc 16:36

a) Ta có: (a + b + c + d)(a - b - c +d )=( (a + d) + (b + c) )( (a + d) - (b + c) )

                                                     =(a + d )- (b +c )2                             (1)

              (a - b + c - d)(a + b - c - d)=(a - d)- (b - c)2                                  (2)

Từ (1) và (2)  => a+ 2ad + d- b- 2bc - c2=a- 2ad + d- b+ 2bc - c2

4ad=4bc => ad=bc <=> \(\frac{a}{c}=\frac{b}{d}\)  (đpcm)

 

phan gia huy
Xem chi tiết
pham trung thanh
10 tháng 2 2018 lúc 16:10

Áp dụng BĐT Cauchy, ta có:

\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}=4abcd\)

Dấu = xảy ra khi a=b=c=d

Vậy a=b=c=d

Trần Đức Huy
2 tháng 5 2018 lúc 20:37

a4+b4+c4+d2>4abed

Nguyễn Địch Nhật Minh
Xem chi tiết
Nguyễn Mai Quỳnh Anh
Xem chi tiết
minh anh
Xem chi tiết
Mr Lazy
21 tháng 7 2015 lúc 20:00

Áp dụng tính chất dãy tỉ số bằng nhau (giả sử tất cả các mẫu số trong phép biến đổi đều khác 0)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\left(\frac{a-b}{c-d}\right)^4=\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\)

 

Hày Cưi
Xem chi tiết
Không Tên
8 tháng 11 2018 lúc 17:51

\(a^2+b^2=2ab\)

<=>  \(a^2+b^2-2ab=0\)

<=>  \(\left(a-b\right)^2=0\)

<=>   \(a-b=0\)

<=>  \(a=b\)  (đpcm)

Không Tên
8 tháng 11 2018 lúc 18:01

\(a^3+b^3+c^3=3abc\)

<=>  \(a^3+b^3+c^3-3abc=0\)

<=>  \(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

<=>   \(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

<=>  \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

<=>  \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

Xét:  \(a^2+b^2+c^2-ab-bc-ca=0\)

<=>  \(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

<=>  \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=>  \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)

<=>  \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)

<=>  \(a=b=c\)

=>  đpcm

Không Tên
8 tháng 11 2018 lúc 18:03

cách khác:

Áp dụng BĐT AM-GM ta đc:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu "=" xảy ra  <=>  \(a=b=c\)

c)  bạn lm tương tự

Vua hải tặc ZORO
Xem chi tiết
huỳnh minh quí
24 tháng 1 2016 lúc 17:06

bài này cũng có thể giải bằng cauchy 2 số

a^4+b^4+c^4+d^4≥2a^2b^2+2c^2d^2

<=>a^4+b^4+c^4+d^4≥2(a^2b^2+c^2d^2)

<=>a^4+b^4+c^4+d^4≥2.2abcd

<=>a^4+b^4+c^4+d^4≥4abcd

dấu "=" xảy ra khi {a^4=b^4;c^4=d^4;a^2b^2=c^2d^2 =>a=b=c=d

( dấu ^ là nâng lên lũy thừa nhiên bạn )

oOo tHằNg NgỐk tỰ Kỉ oOo
24 tháng 1 2016 lúc 17:09

Huỳnh Minh Quý lm đúng òi đó

Dung Lê
Xem chi tiết