Cho 3 số thực a,b,c \(\ne\)0 và đôi 1 khác nhau thỏa mãn
\(a^2\left(b+c\right)=b^2\left(a+c\right)=2016\)
Tính giá trị của biểu thức:\(H=c^2\left(a+b\right)\)
Cho 3 số thực a, b, c khác 0 và đôi 1 khác nhau thỏa mãn:
\(a^2\cdot\left(b+c\right)=b^2\cdot\left(a+c\right)=2018\)
Tính giá trị biểu thức \(H=c^2\cdot\left(a+b\right)\)
Cho 3 số thực a ,b ,c khác 0 và đôi một khác nhau thoả mãn \(a^2\left(b+c\right)=b^2\left(a+c\right)=2014\)
Tính giá trị biểu thức \(H=c^2\left(a+b\right).\)
Cho 3 số thực a,b,c khác 0 và đôi một khác nhau thỏa mãn \(a^2\left(b+c\right)=b^2\left(a+c\right)=2022\).Tính giá trị của iểu thức P= \(c^2\left(a+b\right)\)
`Answer:`
Có `a^2.(b+c)=b^2.(a+c)`
`<=>a^2.b+a^2.c-ab^2-b^2.c=0`
`<=>ab.(a-b)+c.(a^2-b^2)=0`
`<=>(a-b)(ab+c(a+b))=0`
`<=>(a-b)(ab+ac+bc)=0`
`<=>ab+ac+bc=0`
Lúc này `P=c^2.(a+b)=c.(ac+bc)=c.(-ab)=-abc`
Mà `a^2.(b+c)=a.(ab+ac)=a.(-bc)=-abc=2022`
Vậy `P=2022`
Cho các số thực a, b, c đôi một khác nhau thỏa mãn ab + bc + ca = 1. Tính giá trị của biểu thức:\(B=\frac{\left(a^2+2bc-1\right)\left(b^2+2ca-1\right)\left(c^2+2ab-1\right)}{^{\left[ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\right]^2}}\)
Nhân khai triển tử và mẫu của B, thấy ab + bc + ca thì thay bằng 1
Cho 3 số thực a,b,c khác 0 và đôi 1 khác nhau thỏa mãn :
\(a^2\left(b+c\right)=b^2\left(a+c\right)=2016\)
Tính \(P=c^2\left(a+b\right)\)
ta có : \(a^2\left(b+c\right)=b^2\left(a+c\right)\)
\(\Rightarrow a^2b+a^2c-b^2a-b^2c=0\)
\(\Rightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=0\)
\(\Rightarrow ab\left(a-b\right)+c\left(a+b\right)\left(a-b\right)=0\)
\(\Rightarrow\left(a-b\right)\left(ab+bc+ca\right)=0\)
\(\Rightarrow ab+bc+ca=0\)(vì \(a\ne b\))
\(\Rightarrow a\left(ab+bc+ca\right)=0\)
\(\Rightarrow a^2b+abc+ca^2=0\)
\(\Rightarrow a^2\left(b+c\right)+abc=0\Rightarrow2016+abc=0\)
\(\Rightarrow abc=-2016\)
TA LẠI CÓ : \(ab+bc+ac=0\Rightarrow c\left(ab+bc+ca\right)=0\)
\(\Rightarrow bc^2+ac^2+abc=0\Rightarrow c^2\left(a+b\right)+abc=0\)
\(\Rightarrow c^2\left(a+b\right)-2016=0\Rightarrow c^2\left(a+b\right)=2016\)
cho mk hỏi câu này nha mọi người:
Cho ba số thực a,b,c khác 0 và đôi một khác nhau thỏa mãn \(a^2\cdot\left(b+c\right)=b^2\cdot\left(a+c\right)=2014.\) Tính giá trị biểu thức \(H=c^2\cdot\left(a+b\right).\)
Cho ba số a, b, c đôi một khác nhau và thỏa mãn \(a^2+b=b^2+c=c^2+a\). Tính giá trị biểu thức \(\left(a+b-1\right)\left(b+c-1\right)\left(c+a-1\right)\)
Ta có :\(a^2+b=b^2+c\Rightarrow\left(a-b\right)\left(a+b\right)=c-b\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-\left(a-b\right)=c-b-a+b\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-1\right)=c-a\)
Tương tự \(\hept{\begin{cases}\left(b-c\right)\left(b+c-1\right)=a-b\\\left(a-c\right)\left(a+c-1\right)=c-b\end{cases}}\)
Nhận vế với vế của các đẳng thức trên ta được :
\(\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b-1\right)\left(b+c-1\right)\left(a+c-1\right)=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
\(\Rightarrow\left(a+b-1\right)\left(b+c-1\right)\left(a+c-1\right)=1\)
Bài 17: Cho a, b, c là 3 số thực khác 0, thỏa mãn điều kiện : \(a+b\ne-c\) và \(\dfrac{a+b-c}{c}\)=\(\dfrac{b+c-a}{a}\)=\(\dfrac{c+a-b}{b}\). Tính giá trị biểu thức P=\(\left(1+\dfrac{b}{a}\right)\)x\(\left(1+\dfrac{a}{c}\right)\)x\(\left(1+\dfrac{c}{b}\right)\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)
\(\dfrac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\\ \dfrac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\\ \dfrac{c+a-b}{b}=1\Rightarrow c+a-b=b\Rightarrow c+a=2b\)
\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\\ =\dfrac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}\\ =\dfrac{2c.2b.2a}{abc}\\ =\dfrac{8abc}{abc}\\ =8\)
Cho 3 số a,b,c đôi một khác 0, tính giá trị của biểu thức:
\(A=\left(1+\dfrac{a}{b}\right).\left(1+\dfrac{b}{c}\right).\left(1+\dfrac{c}{a}\right)\)
thỏa mãn điều kiện: \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Ta có: \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)\(=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
=> a+b=2c; b+c=2a; c+a=2b
Thay vào A ta được: A=((a+b)/b)((c+b)/c)((a+c)/a)
=2c/b.2a/c.2b/a=2.2.2=8