Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Giang Nguyen
Xem chi tiết
Kudo Shinichi
Xem chi tiết
Free Fire Game
Xem chi tiết
Yen Nhi
20 tháng 2 2022 lúc 23:37

`Answer:`

Có `a^2.(b+c)=b^2.(a+c)`

`<=>a^2.b+a^2.c-ab^2-b^2.c=0`

`<=>ab.(a-b)+c.(a^2-b^2)=0`

`<=>(a-b)(ab+c(a+b))=0`

`<=>(a-b)(ab+ac+bc)=0`

`<=>ab+ac+bc=0`

Lúc này  `P=c^2.(a+b)=c.(ac+bc)=c.(-ab)=-abc`

Mà `a^2.(b+c)=a.(ab+ac)=a.(-bc)=-abc=2022`

Vậy `P=2022`

Khách vãng lai đã xóa
Cù Hương Ly
Xem chi tiết
Sắc màu
19 tháng 8 2018 lúc 15:29

Nhân khai triển tử và mẫu của B, thấy ab + bc + ca thì thay bằng 1

Trần Thu Phương
Xem chi tiết
trần hoàng anh
21 tháng 8 2018 lúc 7:48

ta có : \(a^2\left(b+c\right)=b^2\left(a+c\right)\)

\(\Rightarrow a^2b+a^2c-b^2a-b^2c=0\)

\(\Rightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=0\)

\(\Rightarrow ab\left(a-b\right)+c\left(a+b\right)\left(a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(ab+bc+ca\right)=0\)

\(\Rightarrow ab+bc+ca=0\)(vì \(a\ne b\))

\(\Rightarrow a\left(ab+bc+ca\right)=0\)

\(\Rightarrow a^2b+abc+ca^2=0\)

\(\Rightarrow a^2\left(b+c\right)+abc=0\Rightarrow2016+abc=0\)

\(\Rightarrow abc=-2016\)

TA LẠI CÓ : \(ab+bc+ac=0\Rightarrow c\left(ab+bc+ca\right)=0\)

\(\Rightarrow bc^2+ac^2+abc=0\Rightarrow c^2\left(a+b\right)+abc=0\)

\(\Rightarrow c^2\left(a+b\right)-2016=0\Rightarrow c^2\left(a+b\right)=2016\)

Bùi Thanh Hải
Xem chi tiết
Trương Krystal
Xem chi tiết
Đinh Đức Hùng
24 tháng 5 2018 lúc 7:00

Ta có :\(a^2+b=b^2+c\Rightarrow\left(a-b\right)\left(a+b\right)=c-b\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-\left(a-b\right)=c-b-a+b\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-1\right)=c-a\)

Tương tự \(\hept{\begin{cases}\left(b-c\right)\left(b+c-1\right)=a-b\\\left(a-c\right)\left(a+c-1\right)=c-b\end{cases}}\)

Nhận vế với vế của các đẳng thức trên ta được :

\(\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b-1\right)\left(b+c-1\right)\left(a+c-1\right)=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

\(\Rightarrow\left(a+b-1\right)\left(b+c-1\right)\left(a+c-1\right)=1\)

Bùi Ngọc Tố Uyên
Xem chi tiết
ILoveMath
4 tháng 12 2021 lúc 21:55

Áp dụng t/c dtsbn ta có:

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)

\(\dfrac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\\ \dfrac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\\ \dfrac{c+a-b}{b}=1\Rightarrow c+a-b=b\Rightarrow c+a=2b\)

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\\ =\dfrac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}\\ =\dfrac{2c.2b.2a}{abc}\\ =\dfrac{8abc}{abc}\\ =8\)

Đặng Thị Trà My
Xem chi tiết
Mei Shine
7 tháng 12 2023 lúc 21:35

Ta có: \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)\(=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

=> a+b=2c; b+c=2a; c+a=2b

Thay vào A ta được: A=((a+b)/b)((c+b)/c)((a+c)/a)

=2c/b.2a/c.2b/a=2.2.2=8