Chứng minh nếu a và b là 2 số nguyên tố cùng nhau thì a và a + b cũng là 2 số nguyên tố cùng nhau
Chứng minh nếu a và b là 2 số nguyên tố cùng nhau thì a x b và a + b cũng là 2 số nguyên tố cùng nhau
chứng minh rằng nếu a và b là hai số nguyên tố cùng nhau thì a và a+b cũng là 2 số nguyên tố cùng nhau
Chứng minh nếu a và b là các số nguyên tố cùng nhau thì a2 và a+b là các số nguyên tố cùng nhau.
CMR nếu a và b là 2 số nguyên tố cùng nhau thì a^2 và a+b cũng nguyên tố cùng nhau
Gỉa sử a2 và a+b không nguyên tố cùng nhau
ƯCLN(a2;a+b0=d(d\(\in\)N*,d\(\ne\)1,d nguyên tố) (1)
Nói cách khác: Gọi d là một ước nguyên tố của a2 và a+b
\(\Rightarrow\) a2 chia hết cho d
a+b chia hết cho d
\(\Rightarrow\) a chia hết cho d
a+b chia hét cho d
\(\Rightarrow\) a chia hết cho d
b chia hết cho d
\(\Rightarrow\)d là ƯC nguyên tố của a và b
\(\Rightarrow\)a và b không nguyên tố cùng nhau(mâu thuãn với đề bài)
Vậy a2 và a+b nguyên tố cùng nhau nếu a và b nguyên tố cùng nhau
Cho a và b là hai số nguyên tố cùng nhau . Chứng minh rằng a^2 và a+b cũng là hai số nguyên tố cùng nhau
Cho hai số nguyên tố cùng nhau a, b .Chứng minh rằng:
a,b và a-b cũng là hai số nguyên tố cùng nhau .
b,\(a^2+b^2\)và \(ab\)cũng là hai số nguyên tố cùng nhau .
Biết a và b là hai số nguyên tố cùng nhau. Chứng minh a^2 và a+b cũng là hai số nguyên tố cùng nhau
Cho a và b là 2 số nguyên tố cùng nhau .chứng minh rằng các số sau cũng là hai số nguyên tố cùng nhau a)a và a+b b)a2 và a+b c)ab và a+b
Cho a và b là 2 số nguyên tố cùng nhau. Chứng minh rằng các số sau cũng là 2 số nguyên tố cùng nhau:
a) b và a- b( a> b)
b) a2+ b2 và ab
a) Gọi ƯCLN (b;a-b) là d
thì : b chia hết cho d
a-b chia hết cho d
suy ra : a chia hết cho d
suy ra : d thuộc ước chung của a và b
Mà ƯCLN (a,b)=1
ƯC (a,b) = Ư(1)=1
Suy ra d=1
Vậy b và a-b nguyên tố cùng nhau
b) Giả sử a^2 +b^2 và ab không nguyên tố cùng nhau
Khi đó ƯCLN (a^2+b^2 ,ab)=d thuộc N (d khác 1)
Do vậy d chia hết cho p (với p là số nguyên tố)
Suy ra a^2 + b^2 chia hết cho p và ab chia hết cho p
Suy ra a chia hết cho p hoặc b chia hết cho p
TH1:
a chia hết cho p suy ra a^2 chia hết cho p mà a^2 +b^2 chia hết cho p
Suy ra b^2 chia hết cho p. Vậy b chia hết cho p
Suy ra p thuộc ƯC(a,b)
Mà a và b nguyên tố cùng nhau nên p=1
Mà p là số nguyên tố nên p không thể bằng 1. Trường hợp này vô lí
TH2: Làm tương tự như TH1 nhưng đổi thành b chia hết cho p rồi chứng minh TH2 vô lí.
Vậy điều giả sử là sai
Suy ra a^2 +b^2 và ab nguyên tố cùng nhau
mk giải câu b thôi nha câu a có người giải r
gọi ƯCLN(a^2+b^2 và ab) là d
Ta có :
ab \(⋮\)d Nên :
TH1 : a \(⋮\)d => a^2 chia hết cho d => b^2 chia hết cho d => b chia hết cho d
TH2 : b chia hết cho d => b^2 chia hết cho d => a^2 chia hết cho d => a chia hết cho d
TH3 : a chia hết cho d và b chia hết cho d
Từ các trường hợp trên ta đề có được a chia hết cho d và b chia hết cho d => d thuộc ước chung của a^2 + b^2 và ab
mà ước chung lớn nhất của a và b là 1 Nên ước chung của a^2 + b^2 và ab là 1 => hai số này là hai số nguyên tố
* LƯU Ý :
1. Tớ hơi làm biếng nên chỗ mấy kí hiệu tớ ghi ra luôn không ghi tắt nên mấy chỗ ước chung ; ước chung lớn nhất ; chia hết bạn nhớ viết thành kí hiệu
2. ab chia hết cho d tớ chia ra 3 th rằng a chia hết cho d ... chỗ đó vì trong một tích nếu muốn tích đó chia hết cho 1 số thì chắc chắn trong tích đó luôn luôn có một thừa số chia hết cho số đó hoặc cả hai số đều chia hết thì tích mới chia hết cho số này .
3.Vì a chia hết cho d nên a^2 chia hết cho d vì a^2 = a.a mà a chia hết cho d nên tích a^2 chia hết cho d (đã giải thích lưu ý 2 ) trong một tổng nếu a + b chia hết cho c mà a chia hết cho c thì b phải chia hết cho c hay nói cách khác a^2 + b^2 chia hết cho d mà a ^2 chia hết cho d thì b^2 chia hết cho d . Lại có b^2 = b.b nên sẽ có một thừa số chia hết cho d mà hai thừa số đều là b nên b chia hết cho d ( TƯƠNG TỰ TH2 CX VẬY NHA )
4. Bài làm của mình chưa được đẹp lắm bạn cố gắng trình bày rõ ràng hơn giúp mình
CẢM ƠN BẠN