Cho x, y ∈ N sao cho: x+3y chia hết cho 4. Chứng minh rằng: 3x + y chia hết cho 4.
cho x, y là số tự nhiên sao cho x + 3y chia hết cho 4. Chứng minh rằng: 3x + y chia hết cho 4.
THAM SỜ KHẢO SỜ NHA;
2x + 3y chia hết cho 7
=> 3(2x+3y) chia hết cho 7
hay 6x+ 9y chia hết cho 7 (1)
3x + y chia hết cho 7
=> 2(3x+y) chia hết cho 7
hay 6x + 2y chia hết cho 7
xét hiệu
=> 6x + 9y - (6x + 2y)
= 6x -+ 9y - 6x - 2y
= 7y chia hết cho 7 (2)
từ 1 và 2
=> 6x + 2y chia hết cho 7
hay 3x + y chia hết cho 7 (đpcm)
4 không chia hết cho 49. Bạn xem lại đề xem lỗi ở đâu.
a) Chứng minh rằng : Nếu 3x + 5y chia hết cho 7 thì x + 4y chia hết cho 7 (x, y ∈N).
Điều ngược lại có đúng không?
b) Chứng minh rằng : Nếu 2x + 3y chia hết cho 17 thì 9x + 5y chia hết cho 17 (x, y thuoc N). Điều ngược lại có đúng không ?
Mấy câu này khá giống nhau làm cho câu mẫu rồi câu sau tự làm nha em =))
a) 3x + 5y ⋮ 7
=> 5.(3x + 5y) ⋮ 7
<=> 15x + 25y ⋮ 7 (1)
Lại có: 14x ⋮ 7; 21y ⋮ 7 => 14x + 21y ⋮ 7 (2)
Lấy (1) trừ (2), ta có:
(15x + 25y) - (14x + 21y) ⋮ 7
<=> x + 4y ⋮ 7
Điều ngược lại đương nhiên là đúng =)))
Chúc em học tốt !!!
Bài đâu thế , quen lắm nhưng nhớ không ra
cho x, y là số tự nhiên sao cho x + 3y chia hết cho 9. chứng minh rằng: 4x + 3y chia hết cho 9.
\(x+3y⋮9\Rightarrow5\left(x+3y\right)=5x+15y⋮9\)
\(\Rightarrow\left(5x+15y\right)-\left(x+3y\right)=4x+12y⋮9\)
\(4x+12y=\left(4x+3y\right)+9y⋮9\)
\(9y⋮9\Rightarrow4x+3y⋮9\)
Chứng minh : Nếu x,y N sao cho 3x - y + 1 và 2x + 3y đều chia hết cho 7 thì x và y chia cho 7 dư 3.
! Cho A = abc chia hết cho 4 .Với a;b là các chữ sô chẵn..Chứng minh rằng c chia hết cho 4
2 Chứng minh rằng nếu 2x + 3y chia hết cho 17 (x;y thuộc N) thì 9x + 5y chia hết cho 17
abc = a.100+b.10+c
Theo tính chất chia hết của phép cộng ta có :
a.100 chia hết 4
b.10 chia hết 4
c chia hết 4 (đpcm)
b) 9x + 5y
=2x +3y+7x +2y
=2(2x+3y)+5x -1y
=3(2x+3y)+3x-4y
=4(2x+3y) +1x-7y
.........................
=13(2x +3y)-17x-34y
Vì 17 chia hết17
34 chia hết 17
=>13(3x+2y)-17x-34y hay 2x +3y chia hết cho 4
k nha bạn k nha k nha mình là người đầu tiên
Chứng minh: Nếu x,y thuộc N sao cho 3x-y+1 và 2x+3y-1 chia hết cho 7 thì x,y chia cho 7 đều dư 3
cho x,y là các số tự nhiên chứng minh rằng 3x+y chia hết cho 7 khi và chỉ khi 2x+3y chia hết cho 7
2x + 3y chia hết cho 7
=> 3(2x+3y) chia hết cho 7
hay 6x+ 9y chia hết cho 7 (1)
3x + y chia hết cho 7
=> 2(3x+y) chia hết cho 7
hay 6x + 2y chia hết cho 7
xét hiệu
=> 6x + 9y - (6x + 2y)
= 6x -+ 9y - 6x - 2y
= 7y chia hết cho 7 (2)
từ 1 và 2
=> 6x + 2y chia hết cho 7
hay 3x + y chia hết cho 7 (đpcm)
1/ Cho:x + 4y chia hết cho 7 (x,y thuộc N).
Chứng tỏ: 3x + 9y chia hết cho 7
2/ Cho 9x + 5y chia hết cho 17 (x,y thuộc N).
Chứng tỏ rằng : 2x + 3y chia hết cho 17
Bài 2 :
Ta có : 9x + 5y và 17x + 17y chia hết cho 17
=> ( 17x + 17y ) - ( 9x + 5y ) chia hết cho 17
=> 8x + 12y chia hết cho 17
=> 4.(2x+3y) chia hết cho 17
Mà (4;17) = 1 nên 2x + 3y chia hết cho 17
=> đpcm
Bài 1: Cho x-5.y chia hêts cho 4 (x, y thuộc N). Chứng minh rằng:
a/ 3x + y chia hết cho 4
b/ 5x + 3y chia hết cho 4
Các bạn cố gắng giúp mik giải chi tiết với nhé! Chiều mai mik phải đi học còn sáng mai thì mik phải tiếp bạn rùi cho nên các bạn giải hộ mik thật chi tiết í nhé!!!