Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Namikaze Minato
Xem chi tiết
Bich Phan
Xem chi tiết
Võ Đông Anh Tuấn
5 tháng 11 2016 lúc 10:39

a ) \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}=\frac{1}{4}\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

\(< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\right)=\frac{1}{4}\left(1+\frac{1}{1}-\frac{1}{n}\right)< \frac{1}{2}\)

b )

\(B=\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{3^2-1}+\frac{1}{5^2-1}+...+\frac{1}{\left(2n+1\right)^2-1}\)

\(=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2n\left(2n+2\right)}\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{2n}-\frac{1}{2n+2}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2n+2}\right)< \frac{1}{4}\).

lala
Xem chi tiết
Quay Cuồng
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Hatsune Miku
19 tháng 6 2018 lúc 15:39
​29/152323/125/65/4-31/1231/6-13/31087/1801/61/62-67/24
Phí Nhật Minh
11 tháng 4 2022 lúc 16:57
Ôi mẹ ơi dài khiếp
Khách vãng lai đã xóa
phùng thị thu hải
Xem chi tiết
Hà Trang
12 tháng 3 2017 lúc 21:37

a. Ta có: \(\frac{1}{2^2}\)\(\frac{1}{1.3}\)

\(\frac{1}{4^2}\)< 1/(3.5)

1/(6^2) <1/(5.7)

...

1/(2n)^2 < 1/(2n-1)(2n+1)

=> 1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2 < 1/(1.3) +...+1/(2n-1)(2n+1)

=> 2(1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2) < (1/1 - 1/3 +1/3 - 1/5 + 1/5 - 1/7 +...+ 1/(2n-1) - 1/(2n+1)

=>2(1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2) < 1 - 1/(2n+1) = 2n/(2n+1)

=> 1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2 < 2n/(2n+1) . 1/2

Vì 2n/2n+1 < 1 =>  2n/(2n+1) . 1/2 < 1/2

=> 1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2 <1/2

 Câu b tương tự

a; A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{\left(2n\right)^2}\) 

A = \(\dfrac{1}{2^2}\).(\(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{n^2}\)

A = \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{n.n}\))

Vì \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\); ...; \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right)n}\)

nên A < \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{\left(n-1\right)n}\))

\(\dfrac{1}{4.}\)(1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\))

\(\dfrac{1}{4}\).(1 + 1 - \(\dfrac{1}{n}\))

\(\dfrac{1}{4}\).(2 - \(\dfrac{1}{n}\))

\(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\) (đpcm)

 

Hoài Thương
Xem chi tiết
minhanh
19 tháng 4 2017 lúc 11:09

A > B

- Ủng hộ -

Ad Dragon Boy
19 tháng 4 2017 lúc 11:10

\(A=B\)

Đúng 100% 

Đúng 100%

Đúng 100%