Chứng minh : 16n - 15n -1 \(⋮\) 225
Chứng minh rằng 16n - 15n - 1 chia hết cho 225 ( với n thuộc N* )
Chứng minh:16n-15n-1 chia hết cho 225 với mọi n thuộc N*
Chứng minh : 16n - 15n -1 \(⋮\) 225
Gọi T(n) là mệnh đề cần chứng minh
*Khi n=1, ta có: \(16^1-15.1-1=0\) chia hết cho 225. Vậy T(1) đúng.
* Giả sử T(k) đúng tức là \(16^k-15k-1\) chia hết cho 225
* Chứng minh T(k+1) đúng tức là chứng minh
\(16^{k+1}-15\left(k+1\right)-1\) chia hết cho 225
Ta có: \(16^{k+1}-15\left(k+1\right)-1=16^k.16-15k-16\)
Vì: \(16^k-15k-1=n.225\)(vì chia hết cho 225)
\(\Rightarrow16^k=225n+15k+1\)
Do đó: \(16^{k+1}-15\left(k+1\right)-1=16\left(225n+15k+1\right)-15k-16=225\left(16n+k\right)\) là bội số của 225
Hay \(16^{k+1}-15\left(k+1\right)-1\) chia hết cho 225
Vậy T(k+1) đúng
Theo nguyên lí quy nạp, ta kết luận T(n) đúng với mọi n \(\in N\)
Chứng minh rằng:
a. 1110 - 1 chia hết cho 100
b. 9 . 10n + 18 chia hết cho 27
c. 16n - 15n - 1 chia hết cho 255
chứng minh rằng :15n+6 và 16n+5 là 2 số nguyên tố cùng nhau?
GIẢI ĐƯỢC THÌ 1 LIKE
16n/15n+2la so Nguyen
chứng minh rằng 16n-15n-1 chia hết cho 225
Đặt Un = 16^n-15n-1
- Xét n = 1 , ta có : U1 = 16^1 - 15*1 - 1 =0 chia hết cho 225
- Giả sử Un chia hết cho 225 với n = k nào đó ( k >=1), tức là : Uk = 16^k -15k -1 chia hết cho 225
Giờ ta chỉ cần chứng minh U[k + 1] = 16^(k + 1 ) -15(k + 1) -1 chia hết cho 225 là được
**Thật vậy ta có 16^(k + 1 ) -15(k + 1) -1 = 16*16^k - 15k - 15 - 1 = 16^k -15k -1 + 15*16^k -15=Uk + 15(16^k -1) (1) Ở đây, đã có Uk chia hết cho 225 rồi, ta thấy chỉ cần chứng minh 16^k -1 chia hết cho 15 nữa là được
_________________-
Với việc chứng minh Vk = 16^k - 1 chia hết cho 15
- Xét k = 1 , ta có V1 = 15 chia hết cho 15
- Giả sử Vk chia hết cho 15 với k = h nào đó (h>= 1), tức là Vh = 16^h -1 chia hết cho 15
Giờ ta chỉ cần chứng minh V[h + 1] = 16^(h + 1) - 1 chia hết cho 15 là được
*** Thật vậy tacó 16^(h+1) - 1 = (16^h)*16 - 1 = 16^h - 1 + 15*16^h = Vh + 15*16^h chia hết cho 15 (2)
______________
Vậy từ (1) và (2) ta có được điều phãi chứng minh
16 đồng dư với 1(mod 15)
=>16n đồng dư với 1(mod 15)
=>16n-1 đồng dư với 0(mod 15)
=>16n-1 chia hết cho 15
mà 15n chia hết cho 15
=>16n-15n-1 chia hết cho 15(đpcm)
Với n=1 thì 16n – 15n – 1 = 16 – 15 – 1 = 0 ⋮ 225
Giả sử 16k – 15k – 1 ⋮ 225
Ta chứng minh 16k+1 – 15(k+1) – 1 ⋮ 225
Thực vậy: 16k+1 – 15(k+1) – 1 = 16.16k – 15k – 15 – 1
= (16k – 15k – 1) + 15.16k – 15
Theo giả thiết qui nạp 16k – 15k – 1 ⋮ 225
Còn 15.16k – 15 = 15(16k – 1) ⋮ 15.15 = 225
Kết luận: Vậy 16n – 15n – 1 ⋮ 225.
Chứng minh rằng 16n - 15n - 1 chia hết cho 225 ( với n thuộc N* )
\(\frac{16n+5}{6n+2}\) Chứng minh phân số trên tối giản
Gọi ƯCLN(16n+5; 6n+2) là d. Ta có:
16n+5 chia hết cho d => 48n+15 chia hết cho d
6n+2 chia hết cho d => 48n+16 chia hết cho d
=> 48n+16-(48n+15) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(16n+5; 6n+2) = 1
=> \(\frac{16n+5}{6n+2}\)tối giản (Đpcm)