Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thái Anh
Xem chi tiết
Lê Thị Ngọc
Xem chi tiết
Nấm Chanel
Xem chi tiết
Unruly Kid
8 tháng 11 2017 lúc 19:51

Gọi T(n) là mệnh đề cần chứng minh

*Khi n=1, ta có: \(16^1-15.1-1=0\) chia hết cho 225. Vậy T(1) đúng.

* Giả sử T(k) đúng tức là \(16^k-15k-1\) chia hết cho 225

* Chứng minh T(k+1) đúng tức là chứng minh

\(16^{k+1}-15\left(k+1\right)-1\) chia hết cho 225

Ta có: \(16^{k+1}-15\left(k+1\right)-1=16^k.16-15k-16\)

Vì: \(16^k-15k-1=n.225\)(vì chia hết cho 225)

\(\Rightarrow16^k=225n+15k+1\)

Do đó: \(16^{k+1}-15\left(k+1\right)-1=16\left(225n+15k+1\right)-15k-16=225\left(16n+k\right)\) là bội số của 225

Hay \(16^{k+1}-15\left(k+1\right)-1\) chia hết cho 225

Vậy T(k+1) đúng

Theo nguyên lí quy nạp, ta kết luận T(n) đúng với mọi n \(\in N\)

Nguyên Lê
Xem chi tiết
Vo Thanh Anh
Xem chi tiết
Vo Thanh Anh
10 tháng 8 2018 lúc 19:00

ai cần

Vo Thanh Anh
10 tháng 8 2018 lúc 19:00

mai cần

Võ Thiên Phúc
Xem chi tiết
Yugioh Nguyên
3 tháng 3 2016 lúc 21:07

5:\(\frac{2}{5}\)=37.5

kaito kid
3 tháng 3 2016 lúc 21:06

30 ung ho nha

Vũ Minh Trang
Xem chi tiết
Ngô Văn Nam
9 tháng 1 2016 lúc 11:05

  Đặt Un = 16^n-15n-1 
- Xét n = 1 , ta có : U1 = 16^1 - 15*1 - 1 =0 chia hết cho 225 
- Giả sử Un chia hết cho 225 với n = k nào đó ( k >=1), tức là : Uk = 16^k -15k -1 chia hết cho 225 
Giờ ta chỉ cần chứng minh U[k + 1] = 16^(k + 1 ) -15(k + 1) -1 chia hết cho 225 là được 
**Thật vậy ta có 16^(k + 1 ) -15(k + 1) -1 = 16*16^k - 15k - 15 - 1 = 16^k -15k -1 + 15*16^k -15=Uk + 15(16^k -1) (1) Ở đây, đã có Uk chia hết cho 225 rồi, ta thấy chỉ cần chứng minh 16^k -1 chia hết cho 15 nữa là được 
_________________- 

Với việc chứng minh Vk = 16^k - 1 chia hết cho 15 
- Xét k = 1 , ta có V1 = 15 chia hết cho 15 
- Giả sử Vk chia hết cho 15 với k = h nào đó (h>= 1), tức là Vh = 16^h -1 chia hết cho 15 
Giờ ta chỉ cần chứng minh V[h + 1] = 16^(h + 1) - 1 chia hết cho 15 là được 
*** Thật vậy tacó 16^(h+1) - 1 = (16^h)*16 - 1 = 16^h - 1 + 15*16^h = Vh + 15*16^h chia hết cho 15 (2) 

______________ 

Vậy từ (1) và (2) ta có được điều phãi chứng minh

✓ ℍɠŞ_ŦƦùM $₦G ✓
9 tháng 1 2016 lúc 11:05

16 đồng dư với 1(mod 15)

=>16n đồng dư với 1(mod 15)

=>16n-1 đồng dư với 0(mod 15)

=>16n-1 chia hết cho 15

mà 15n chia hết cho 15

=>16n-15n-1 chia hết cho 15(đpcm)

nguyễn Ngọc Hoàng Mai
24 tháng 2 2018 lúc 17:54

Với n=1 thì 16– 15n – 1 = 16 – 15 – 1 = 0 ⋮ 225

 Giả sử 16– 15k – 1 ⋮ 225

 Ta chứng minh 16k+1 – 15(k+1)  – 1 ⋮ 225

Thực vậy: 16k+1 – 15(k+1) – 1 = 16.16k – 15k – 15 – 1

= (16– 15k – 1) + 15.16– 15

Theo giả thiết qui nạp 16– 15k – 1 ⋮ 225

Còn 15.16– 15 = 15(16– 1) ⋮ 15.15 = 225

Kết luận: Vậy 16– 15n – 1 ⋮ 225.

Nguyễn Thái Anh
Xem chi tiết
Vũ Anh Tú
Xem chi tiết
Hồ Thu Giang
30 tháng 7 2015 lúc 14:31

Gọi ƯCLN(16n+5; 6n+2) là d. Ta có:

16n+5 chia hết cho d => 48n+15 chia hết cho d

6n+2 chia hết cho d => 48n+16 chia hết cho d

=> 48n+16-(48n+15) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(16n+5; 6n+2) = 1

=> \(\frac{16n+5}{6n+2}\)tối giản (Đpcm)