Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thủy Phạm Thanh
Xem chi tiết
Đoàn Cẩm Ly
Xem chi tiết
Bexiu
22 tháng 8 2017 lúc 16:37

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Thanh Tâm
Xem chi tiết
Thanh Tâm
Xem chi tiết
Thanh Tâm
Xem chi tiết
Blue Moon
Xem chi tiết
alibaba nguyễn
15 tháng 11 2018 lúc 8:41

a/ Đảo ngược lại rồi đặc \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

alibaba nguyễn
15 tháng 11 2018 lúc 8:44

b/ Dễ thấy vai trò x, y, z như nhau nên ta chỉ cần xét 1 trường hợp tiêu biểu thôi.

Xét \(x>y>z\)

\(\Rightarrow\frac{1}{x}< \frac{1}{y}< \frac{1}{z}\)

\(\Rightarrow x+\frac{1}{y}>z+\frac{1}{x}\)(trái giả thuyết)

\(\Rightarrow x=y=z\)'

\(\Rightarrow x+\frac{1}{x}=2\)

\(\Leftrightarrow x=1\)

Thiên An
Xem chi tiết
alibaba nguyễn
18 tháng 2 2017 lúc 8:18

Đễ thấy \(x=y=z=0\) là 1 nghiệm của hệ

Xét \(\hept{\begin{cases}x\ne0\\y\ne0\\z\ne0\end{cases}}\)

Cộng 3 phương trình vế theo vế ta được

\(\frac{2x^2}{x^2+1}+\frac{2y^2}{y^2+1}+\frac{2z^2}{z^2+1}=x+y+z\)

Ta có: \(\frac{2x^2}{x^2+1}\le\frac{2x^2}{2x}=x\)

Tương tự: \(\hept{\begin{cases}\frac{2y^2}{y^2+1}\le y\\\frac{2z^2}{z^2+1}\le z\end{cases}}\)

Cộng vế theo vế ta được:

\(\frac{2x^2}{x^2+1}+\frac{2y^2}{y^2+1}+\frac{2z^2}{z^2+1}\le x+y+z\)

Dấu =  xảy ra khi \(x=y=z=1\)

Vậy nghiệm của hệ là: \(\left(x,y,z\right)=\left(0,0,0;1,1,1\right)\)

PS: Tính không làm đâu nhưng mà đồng hương nên giúp nhau vậy :D

Thắng Nguyễn
17 tháng 2 2017 lúc 22:54

nhìn hpt bự con thế này chắc xài BĐT giải r`, chờ mình tẹo :)

Duong Nguyen Tuan
Xem chi tiết
Nyatmax
2 tháng 10 2019 lúc 12:21

\(\hept{\begin{cases}x+y+z=3\left(1\right)\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\left(2\right)\\x^2+y^2+z^2=17\left(3\right)\end{cases}}\left(DK:x,y,z\ne0\right)\)

Ta co:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=3>\frac{1}{3}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{3}\)

Vay HPT vo nghiem

Trịnh Thị Việt Hà
Xem chi tiết
Phan Nghĩa
23 tháng 8 2020 lúc 20:07

Sử dụng bđt AM-GM ta có : 

\(1+x^2\ge2\sqrt{1.x^2}=2x< =>y\ge\frac{2x^2}{2x}=x\)

Bằng cách chứng minh tương tự ta được :

\(z\ge\frac{2y^2}{2y}=y;x\ge\frac{2z^2}{2z}=z\)

Cộng 3 vế lại : \(x+y+z\ge x+y+z\)

Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}1=x^2\\1=y^2\\1=z^2\end{cases}< =>...}\)

Khách vãng lai đã xóa