Cho tam giác ABC, trên tia đối của 2 tia BC và CB lấy điểm D và E sao cho BD=CE=AC=BC.
CMR: a) Tam giác ADE cân tại A
b) Biết góc DAE = 120. CMR tam giác ABC đều
cho tam giác ABC cân tại A, trên tia đối của tia BC lấy điểm D sao cho AB=BD. Trên tia đối của tia CB lấy điểm E sao cho AC=CE
a) CMR:tam giác ADE cân và DE= chu vi tam giác ABC
b)tính các góc của tam giác ADE theo các góc của tam giác ABC
b)biết tam giác ABC đều, tính các góc của ADE
Bài 1: Cho tam giác đều ABC, trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE=BC
a) CM tam giác ADE cân
b) Tính góc DAE
Bài 2: Cho tam giác ABC cân tại A, CE vuông góc với AB, lấy điểm M nằm giữa B và C, vẽ MI vuông góc với AC. (E thuộc AB, I thuộc AB, J thuộc AC). CM MI + MJ = CE
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D sao cho AB=BD. Trên tia đối của tia CB lấy điểm E sao cho AC=CE
a, CMR: Tam giác ADE cân và chu vi tam giác ABC=DE
b, Tính các góc của tam giác ADE nếu tam giác ABC đều
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D sao cho AB = BD. Trên tia đối của tia CB lấy điểm E sao cho AC = Ce.
a. Chứng minh rằng tam giác ADE cân và DE bằng chu vi tam giác ABC
b. Tính các góc của tam giác ADE theo các góc của tam giác ABC
c. Nếu tam giác ABC đều thì tính các góc của tam giác ADE
- Ai đó giúp tớ giải bài toán này với :v Tớ cảm ơn nhiều nhiều nhiều lắm luôn ý!
Câu 1: cho tam giác ABC có góc A=120 độ. 2 tia phân giác của góc B và góc C cắt nhau tại O. Tính số đo góc BOC
Câu 2: cho tam giác ABC đều. Trên tia đối của tia BC lấy điểm D. Trên tia đối của tia CB lấy điểm E sao cho BD=CE=BC
a) chứng minh: tam giác ADE là tam giác cân
b) tính số đo góc DAE
P/s: LÀM ƠN GIÚP MK VS!!! Chiều mai mk nộp rồi ạ. THANKS
Cho tam giá ABC cân tại A trung tuyến AM trên tia đối của BC lấy D trên tia đối của CB lấy E sao cho BD=CE a) c/m tam giác ADE cân tại A b) AM là phân giác góc DAE
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: ΔABC cân tại A có AM là trung tuyến
nên AM vuông góc BC
ΔADE cân tại A có AM là đường cao
nên AM là phân giác của góc DAE
a
Theo đề có \(\widehat{ABC}=\widehat{ACB}\) (tam giác ABC cân tại A)
Lại có: \(\widehat{ABD}+\widehat{ABC}=\widehat{ACE}+\widehat{ACB}\left(=180^o\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Xét tam giác ABD và tam giác ACE có:
`AB=AC`
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
`DB=CE`
=> ΔABD = ΔACE
=> `AD=AE` (2 cạnh tương ứng)
=> Tam giác ADE cân tại A
b
Ta có:
`BM=CM`
`DB=CE`
\(\Rightarrow\)`DM=EM`
\(\Rightarrow\)AM là đường trung tuyến của ΔADE
\(\Rightarrow\)AM là tia phân giác của \(\widehat{DAE}\)
Bài 1: Cho tam giác ABC đều. Trên tia đối tia BC lấy điểm D, trên tia đối tia CB lấy điểm E sao cho BD=CE=BC
a) C/m: tam giác ACE cân
b) Tính góc DAE
Bài 2: Cho tam giác ABC cân tại A. Trên tia đối tia AC lấy điểm D sao cho AD = AC. C/m tam giác BCD vuông
Bài 3: Cho tam giác ABC cân tại A có góc A= 40 độ. Lấy điểm D khác phía B so với AC thoả mãn góc CAD=60 độ, góc ACD=80 độ. C/m BD vuông góc AC
Cho tam giác đều ABC. Trên tia đối của BC lấy điểm D , trên tia đối của CB lấy điểm E sao cho BD=CE=BC
a)Tam giác ADE là tam giác gì ? Vì sao
b)Tính góc DAE
Cho tam giác ABC cân tại A .Trên tia đối của các tia BC và CB thứ tự lấy các điểm D và E sao cho BD=CE 1) Chứng minh tam giác ADE là tam giác cân 2)Gọi M là trung điểm của BC . Chứng minh AM là tia phân giác của góc DAE 3) Từ B và C kẻ BH và CK thứ tự vuông góc với AD và AE. Chứng minh BH=CK cùng đi qua một điểm
A, xét tam giác ABD và tam giác ACE có
AB = AC ( tam giác ABC cân tại A)
MK Góc ABD + ABC = 180 độ
lại có góc ACE + ACB = 180 độ
mà góc ABC = ACB(tam giác ABC cân tại A)
=> Góc ABD =ACE
BD = CE ( GT )
nên tam giác ABD = tam giác ACE (C-G-C)
=> góc ADB = góc AEC
=> tam giác AED cân tại A
b,xét tam giác DAM và tam giác EAM có
AD = AE ( cm a, )
AM cạnh cung
mk có MB=MC(M TĐ BC) (1)
ta lại có BD = CE ( GT) (2)
từ (1) và (2) ta có
DB+BM =CE + MC
hay DM = ME
nên tam giác DAM = tam giác EAM ( C-C-C )
=> góc MAD = MAE
=>AM ph/G góc DAE
c, xét tam giác BAH và tam giác CAK có
góc BHA=CKA ( = 1 vuông )
AC =AB ( tam giác ABC cân tại A)
góc BAH = CAK ( tam giác ABD = tam giác ACE)
nên tam giác BAH = tam giác CAK ( cạnh huyền góc nhọn )
=> BH = CK