Cho tam giác ABC có BD và CE lần lượt là phân giác góc B và góc C, BD và CE cắt nhau tại I. Gọi S là trung điểm BC và cho biết góc BIS = 90, BI = 2IS.
a. CMR: tam giác ABC vuông.
b. CMR: \(\frac{ID}{IB}=\frac{CD}{CB}\)
Bài 1: Cho tam giác ABC, trên cạnh AB lấy 2 điểm D và F sao cho AD = DF = FB. Các trung tuyến AE, BG của tam giác ABC lần lượt cắt CD, CF tại H và K.
a) CMR: GH, EK, AB cắt nhau tại 1 điểm
b) CMR: AB = 4HK
Bài 2: Cho tam giác ABC có BD và CE là phân giác, cắt nhau tại I. Gọi S là trung điểm BC, biết BI = 2IS.
a) CMR: tam giác ABC vuông
b) CMR: ID / IB = CD / CB
Bài 3: Cho tam giác ABC vuông cân tại A. Trên cạnh AB và AC lần lượt lấy các điểm D và E sao cho AD = AE. Qua A và D, kẻ các đường thẳng vuông góc với BE cắt BC thứ tự tại S và T. CMR: S là trung điểm của TC
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath
cho tam giác ABC có góc A= 600, BD và CE lần lượt là tia phân giác của góc B và C, I là giao điểm của BD và CE. CMR ID = IE
Cho tam giác ABC. Gọi BD và CE lần lượt là các tia phân giác của góc ngoài của đỉnh B và C. Vẽ AH vuông góc BD( H thuộc BD), AH cắt BC tại M. AK vuông CE tại K, AK cắt BC tại N. CMR: HK song song BC.
Gọi N, G lần lượt là giao điểm của AH, AK với BC.
Xét ∆ABN có BH là đường cao cũng là phân giác nên là tam giác cân do đó BH cũng là trung tuyến
=> HN = HA
Tương tự: AK = KG
∆ANG có HN = HA và AK = KG nên HK là đường trung bình của tam giác
=> HK // HG hay HK // BC (đpcm)
1. Cho tam giác đều ABC. Gọi M là trung điểm của BC. Trên cạnh AB lấy một điểm D. Tia DM cắt AC tại E. Cmr MD<ME
2. Cho tam giác ABC cân tại A, góc A bằng 108 độ. Gọi O là giao điểm của các đường trung trực, I là giao điểm của các tia phân giác. Cmr BC là đường trung trực của OI
3. Cho tam giác ABC có góc B lớn hơn góc C, hai đường cao BD và CE. Cmr AC - AB > CE - BD
Bạn tự vẽ hình nhé. Mình giải thôi.
1)Bạn chia 2 TH.
a) Góc MDB lớn hơn hoac bằng 60 độ
=>MD<MB mà ME>MC=MB
=>MD<ME.
b) Góc MDB nhỏ hơn 60 độ.
=> MD giao CA tại E .
Dễ dàng cminh DM<ME.
2) Ta có tam giác ABC cân tại A => AI là phân giác cũng là trung trực BC
=> AI trung trực BC. Mà AO là trung trục BC.
=> AI trùng AO.
=>OI là trung trực BC
Đè bài cần xem lại nhé.
3)Ta có góc B > góc C => AC>AB
Có AC đối dienj góc vuông trong tam giác vuông AEC => AC>CE
Tương tự AB>BD
Tất cả các điều => AC-AB>CE-BD
Cho tam giác ABC cân tại A và có cả ba góc đều là góc nhọn.
a) Về phía ngoài của tam giác vẽ tam giác ABE vuông cân tại B. Gọi H là trung điểm của BC, trên tia đối của AH lấy điểm I sao cho AI = BC. Chứng minh 2 tam giác ABI và BEC bằng nhau và BI vuông góc CE.
b) Phân giác của các góc ABC, BDC cắt AC, BC lần lượt tại D, M. Phân giác của góc BDA cắt BC tại N. Chứng minh rằng: BD= \(\frac{1}{2}\)MN
a) Vẽ tia đối của BC là Bx. Gọi giao điểm của BI và CE là M. CE giao AB tại N.
\(\Delta\)ABC cân tại A. H là trung điểm của BC => AH là đường cao của \(\Delta\)ABC => AH\(⊥\)BC.
Ta có: ^ABH+^EBx=1800-^ABE=900 (1)
\(\Delta\)AHB vuông tại H => ^ABH+^BAH=900 (2)
Từ (1) và (2) => ^EBx=^BAH => 1800-^EBx=1800-^BAH => ^EBC=^BAI
Xét \(\Delta\)ABI và \(\Delta\)BEC:
AB=BE
^BAI=^EBC => \(\Delta\)ABI=\(\Delta\)BEC (c.g.c) (đpcm)
AI=BC
=> ^BEC=^ABI (2 góc tương ứng) hay ^BEN=^NBM.
\(\Delta\)EBN vuông tại B => ^BEN+^BNE=900. Thay ^BEN=^NBM, ta được:
^NBM+^BNE=900 hay ^NBM+^BNM=900. Xét \(\Delta\)BMN có:
^NBM+^BNM=900 => ^BMN=900 => BI\(⊥\)CE tại M (đpcm).
Câu hỏi của Nguyễn Minh Huy - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Cho tam giác ABC cân tại A và có cả 3 góc đều là góc nhọn.
a) Về phía ngoài của tam giác vẽ tam giác ABE vuông cân tại B. Gọi H là trung điểm của BC, trên tia đối của AH lấy điểm I sao cho AI = BC. Chứng minh 2 tam giác ABI và BEC bằng nhau và BI vuông góc CE.
b) Phân giác của các góc ABC, BDC cắt AC, BC lần lượt tại D, M. Phân giác của góc BDA cắt BC tại N. Chứng minh rằng: $BD=\frac{1}{2}MN$
Cho tam giác ABC cân tại A và có cả 3 góc đều là góc nhọn.
a) Về phía ngoài của tam giác vẽ tam giác ABE vuông cân tại B. Gọi H là trung điểm của BC, trên tia đối của AH lấy điểm I sao cho AI = BC. Chứng minh 2 tam giác ABI và BEC bằng nhau và BI vuông góc CE.
b) Phân giác của các góc ABC, BDC cắt AC, BC lần lượt tại D, M. Phân giác của góc BDA cắt BC tại N. Chứng minh rằng: $BD=\frac{1}{2}MN$
1. Cho tam giác ABC cân tại A. Trên tia đốicủa tia BC và CB lấy theo thứ tự điểm D và E sao cho BD = CE.
a) CMR: tam giác ADE cân.
b) Gọi M là trung điểm của BC. CMR: AM là tia phân giác của góc DAE và AM vuông góc với DE.
c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH = CK.
d_CMR: HK// BC
e) Cho HD cắt Ck ở N. CMR: A, M, R thẳng hàng.
2. Cho tam giác ABC vuông cân tại A. d là dduowgnf thẳng bất ì qua A (d không cắt đoạn BC). Từ B và C kẻ BD và CE cùng vuông góc với d.
a) CMR: BD // CE.
b) CMR: tam giác ADB = tam giác CEA.
c) CMR: bd + CE = DE.
d) Gọi M là trung điểm của BC. CMR: tam giác DAM = tam gaics ECM và tam giác DME vuông cân.
CO TAM GIAC ABC CAN TAI A
=>AB=AC( DN TAM GIÁC CÂN)
SUY RA GÓC ABC = GÓC ACB( DN TAM GIÁC CÂN)
CÓ GÓC ABC VÀ GÓC ABD LÀ 2 GÓC KỀ BÙ
SUY RA GÓC ABD+ GÓC ABC = 180 ĐỘ
CÓ GÓC ACB VÀ GÓC ACE LÀ 2 GÓC KỀ BÙ
SUY RA GÓC ACB + GÓC ACE = 180 ĐỘ
MÀ GÓC ABC = GÓC ACB( CMT)
SUY RA GÓC ABD+ GÓC ABC = GÓC ACB + ACE( =180 ĐỘ)
=> GÓC ABD= GÓC ACE
XÉT TAM GIÁC ADB VÀ TAM GIÁC AEC CÓ:
AB=AC( CMT)
GÓC ABD = GỐC ACE ( GMT)
DB=EC( GT)
=> TAM GIÁC ADB = TAM GIÁC AEC( C-G-C)
=>AD=AE( 2 CẠNH TƯƠNG ỨNG)
=> TAM GIAC ADE CAN TAI A( DN TAM GIAC CAN)
b)CÓ TAM GIÁC ADE CÂN TẠI A( CMT)
=>GÓC D = GÓC E( ĐN TAM GIÁC CÂN)
CÓ M LÀ TRUNG ĐIỂM CỦA BC=>BM=CM
CO ME = MC+CE
MD=MB+BD
MA CE=BD
MB=MC
=>MD=ME
XÉT TAM GIÁC AMD VÀ TAM GIÁC AME CÓ:
AD= AE(CM CÂU a)
GÓC D=GÓC E(CMT)
MD=ME( CMT)
SUY RA TAM GIÁC AMD= TAM GIÁC AME( C-G-C)
=>GÓC ĐAM = GÓC EAM( 2 GÓC TƯƠNG ỨNG)
SUY RA AM LÀ TIA PHÂN GIÁC CỦA GÓC DAE
CÓ TAM GIÁC AMD = TAM GIÁC AME
SUY RA GÓC AMD = GÓC AME( 2 GÓC TƯƠNG ỨNG)
MÀ 2 GÓC NÀY LÀ 2 GÓC KỀ BÙ
SUY RA AMD+AME = 180 ĐỘ
CÓ GÓC AMD = GÓC AME = 180 ĐỘ :2 = 90 ĐỘ
SUY RA AM VUONG GOC VS DE
CHO BN 2 CAU TRC LAM NAY
NHO K CHO MINH NHA
CO TAM GIAC ADM = TAM GIAC ACE( CM O CAU A)
SUY RA GÓC DAB = GÓC EAC( 2 GÓC TƯƠNG ỨNG)
XÉT TAM GIC AHB VUÔNG TẠI H VÀ TAM GIÁC AKC VUÔNG TẠI K CÓ:
AB = AC ( CM Ở CÂU a)
GÓC DAB = GÓC EAC ( CMT)
=> TAM GIÁC AHB = TAM GIÁC AKC( CH-GN)
=> BH = CK( 2 CẠNH TƯƠNG ỨNG)
d)KHI NÀO MÌNH NGHĨ XONG MÌNH SẼ NS CHO CẬU
2
d) CÓ TAM GIÁC ADB = TAM GIÁC AEC( CM Ở CÂU a)
=> GÓC DAB = GÓC EAC( 2 GÓC TƯƠNG ỨNG)
XÉT TAM GIÁC AHB VUÔNG TẠI H VÀ TAM GIÁC AKC VUÔNG TẠI K CÓ:
GÓC DAB = GÓC EAC( CMT)
AB=AC( CM Ở CÂU a)
=> TAM GIÁC AHB = TAM GIÁC AKC( CH-GN)
=>BH=CK( 2 CẠNH TƯƠNG ỨNG)
ế) MÌNH QUÊN CÁCH CHỨNG MINH 3 ĐIỂM THẲNG HÀNG OY XIN LỖI NHA( CÁI ĐÓ M HỌC Ở ĐẦU NĂM LỚP 7 MÀ)